Abstract:Graph pre-training has been concentrated on graph-level on small graphs (e.g., molecular graphs) or learning node representations on a fixed graph. Extending graph pre-trained models to web-scale graphs with billions of nodes in industrial scenarios, while avoiding negative transfer across graphs or tasks, remains a challenge. We aim to develop a general graph pre-trained model with inductive ability that can make predictions for unseen new nodes and even new graphs. In this work, we introduce a scalable transformer-based graph pre-training framework called PGT (Pre-trained Graph Transformer). Specifically, we design a flexible and scalable graph transformer as the backbone network. Meanwhile, based on the masked autoencoder architecture, we design two pre-training tasks: one for reconstructing node features and the other one for reconstructing local structures. Unlike the original autoencoder architecture where the pre-trained decoder is discarded, we propose a novel strategy that utilizes the decoder for feature augmentation. We have deployed our framework on Tencent's online game data. Extensive experiments have demonstrated that our framework can perform pre-training on real-world web-scale graphs with over 540 million nodes and 12 billion edges and generalizes effectively to unseen new graphs with different downstream tasks. We further conduct experiments on the publicly available ogbn-papers100M dataset, which consists of 111 million nodes and 1.6 billion edges. Our framework achieves state-of-the-art performance on both industrial datasets and public datasets, while also enjoying scalability and efficiency.
Abstract:While large language models (LLMs) have achieved significant success in various applications, they often struggle with hallucinations, especially in scenarios that require deep and responsible reasoning. These issues could be partially mitigate by integrating external knowledge graphs (KG) in LLM reasoning. However, the method of their incorporation is still largely unexplored. In this paper, we propose a retrieval-exploration interactive method, FiDelis to handle intermediate steps of reasoning grounded by KGs. Specifically, we propose Path-RAG module for recalling useful intermediate knowledge from KG for LLM reasoning. We incorporate the logic and common-sense reasoning of LLMs and topological connectivity of KGs into the knowledge retrieval process, which provides more accurate recalling performance. Furthermore, we propose to leverage deductive reasoning capabilities of LLMs as a better criterion to automatically guide the reasoning process in a stepwise and generalizable manner. Deductive verification serve as precise indicators for when to cease further reasoning, thus avoiding misleading the chains of reasoning and unnecessary computation. Extensive experiments show that our method, as a training-free method with lower computational cost and better generality outperforms the existing strong baselines in three benchmarks.
Abstract:Foundation models like ChatGPT and GPT-4 have revolutionized artificial intelligence, exhibiting remarkable abilities to generalize across a wide array of tasks and applications beyond their initial training objectives. However, when this concept is applied to graph learning, a stark contrast emerges. Graph learning has predominantly focused on single-graph models, tailored to specific tasks or datasets, lacking the ability to transfer learned knowledge to different domains. This limitation stems from the inherent complexity and diversity of graph structures, along with the different feature and label spaces specific to graph data. In this paper, we present our UniGraph framework, designed to train a graph foundation model capable of generalizing to unseen graphs and tasks across diverse domains. Unlike single-graph models that use pre-computed node features of varying dimensions as input, our approach leverages Text-Attributed Graphs (TAGs) for unifying node representations. We propose a cascaded architecture of Language Models (LMs) and Graph Neural Networks (GNNs) as backbone networks with a self-supervised training objective based on Masked Graph Modeling (MGM). We introduce graph instruction tuning using Large Language Models (LLMs) to enable zero-shot prediction ability. Our comprehensive experiments across various graph learning tasks and domains demonstrate the model's effectiveness in self-supervised representation learning on unseen graphs, few-shot in-context transfer, and zero-shot transfer, even surpassing or matching the performance of GNNs that have undergone supervised training on target datasets.
Abstract:Graph self-supervised learning (SSL), including contrastive and generative approaches, offers great potential to address the fundamental challenge of label scarcity in real-world graph data. Among both sets of graph SSL techniques, the masked graph autoencoders (e.g., GraphMAE)--one type of generative method--have recently produced promising results. The idea behind this is to reconstruct the node features (or structures)--that are randomly masked from the input--with the autoencoder architecture. However, the performance of masked feature reconstruction naturally relies on the discriminability of the input features and is usually vulnerable to disturbance in the features. In this paper, we present a masked self-supervised learning framework GraphMAE2 with the goal of overcoming this issue. The idea is to impose regularization on feature reconstruction for graph SSL. Specifically, we design the strategies of multi-view random re-mask decoding and latent representation prediction to regularize the feature reconstruction. The multi-view random re-mask decoding is to introduce randomness into reconstruction in the feature space, while the latent representation prediction is to enforce the reconstruction in the embedding space. Extensive experiments show that GraphMAE2 can consistently generate top results on various public datasets, including at least 2.45% improvements over state-of-the-art baselines on ogbn-Papers100M with 111M nodes and 1.6B edges.
Abstract:Graph neural networks (GNNs) have achieved notable success in the semi-supervised learning scenario. The message passing mechanism in graph neural networks helps unlabeled nodes gather supervision signals from their labeled neighbors. In this work, we investigate how consistency regularization, one of widely adopted semi-supervised learning methods, can help improve the performance of graph neural networks. We revisit two methods of consistency regularization for graph neural networks. One is simple consistency regularization (SCR), and the other is mean-teacher consistency regularization (MCR). We combine the consistency regularization methods with two state-of-the-art GNNs and conduct experiments on the ogbn-products dataset. With the consistency regularization, the performance of state-of-the-art GNNs can be improved by 0.3% on the ogbn-products dataset of Open Graph Benchmark (OGB) both with and without external data.