Abstract:While witnessed with rapid development, remote sensing object detection remains challenging for detecting high aspect ratio objects. This paper shows that large strip convolutions are good feature representation learners for remote sensing object detection and can detect objects of various aspect ratios well. Based on large strip convolutions, we build a new network architecture called Strip R-CNN, which is simple, efficient, and powerful. Unlike recent remote sensing object detectors that leverage large-kernel convolutions with square shapes, our Strip R-CNN takes advantage of sequential orthogonal large strip convolutions to capture spatial information. In addition, we enhance the localization capability of remote-sensing object detectors by decoupling the detection heads and equipping the localization head with strip convolutions to better localize the target objects. Extensive experiments on several benchmarks, e.g., DOTA, FAIR1M, HRSC2016, and DIOR, show that our Strip R-CNN can largely improve previous works. Notably, our 30M model achieves 82.75% mAP on DOTA-v1.0, setting a new state-of-the-art record.Code is available at https://github.com/YXB-NKU/Strip-R-CNN.
Abstract:Class-incremental learning is a challenging problem, where the goal is to train a model that can classify data from an increasing number of classes over time. With the advancement of vision-language pre-trained models such as CLIP, they demonstrate good generalization ability that allows them to excel in class-incremental learning with completely frozen parameters. However, further adaptation to downstream tasks by simply fine-tuning the model leads to severe forgetting. Most existing works with pre-trained models assume that the forgetting of old classes is uniform when the model acquires new knowledge. In this paper, we propose a method named Adaptive Representation Adjustment and Parameter Fusion (RAPF). During training for new data, we measure the influence of new classes on old ones and adjust the representations, using textual features. After training, we employ a decomposed parameter fusion to further mitigate forgetting during adapter module fine-tuning. Experiments on several conventional benchmarks show that our method achieves state-of-the-art results. Our code is available at \url{https://github.com/linlany/RAPF}.
Abstract:Class incremental semantic segmentation aims to preserve old knowledge while learning new tasks, however, it is impeded by catastrophic forgetting and background shift issues. Prior works indicate the pivotal importance of initializing new classifiers and mainly focus on transferring knowledge from the background classifier or preparing classifiers for future classes, neglecting the flexibility and variance of new classifiers. In this paper, we propose a new classifier pre-tuning~(NeST) method applied before the formal training process, learning a transformation from old classifiers to generate new classifiers for initialization rather than directly tuning the parameters of new classifiers. Our method can make new classifiers align with the backbone and adapt to the new data, preventing drastic changes in the feature extractor when learning new classes. Besides, we design a strategy considering the cross-task class similarity to initialize matrices used in the transformation, helping achieve the stability-plasticity trade-off. Experiments on Pascal VOC 2012 and ADE20K datasets show that the proposed strategy can significantly improve the performance of previous methods. The code is available at \url{https://github.com/zhengyuan-xie/ECCV24_NeST}.
Abstract:In class-incremental learning (CIL) scenarios, the phenomenon of catastrophic forgetting caused by the classifier's bias towards the current task has long posed a significant challenge. It is mainly caused by the characteristic of discriminative models. With the growing popularity of the generative multi-modal models, we would explore replacing discriminative models with generative ones for CIL. However, transitioning from discriminative to generative models requires addressing two key challenges. The primary challenge lies in transferring the generated textual information into the classification of distinct categories. Additionally, it requires formulating the task of CIL within a generative framework. To this end, we propose a novel generative multi-modal model (GMM) framework for class-incremental learning. Our approach directly generates labels for images using an adapted generative model. After obtaining the detailed text, we use a text encoder to extract text features and employ feature matching to determine the most similar label as the classification prediction. In the conventional CIL settings, we achieve significantly better results in long-sequence task scenarios. Under the Few-shot CIL setting, we have improved by at least 14\% accuracy over all the current state-of-the-art methods with significantly less forgetting. Our code is available at \url{https://github.com/DoubleClass/GMM}.
Abstract:Given unlabelled datasets containing both old and new categories, generalized category discovery (GCD) aims to accurately discover new classes while correctly classifying old classes, leveraging the class concepts learned from labeled samples. Current GCD methods only use a single visual modality of information, resulting in poor classification of visually similar classes. Though certain classes are visually confused, their text information might be distinct, motivating us to introduce text information into the GCD task. However, the lack of class names for unlabelled data makes it impractical to utilize text information. To tackle this challenging problem, in this paper, we propose a Text Embedding Synthesizer (TES) to generate pseudo text embeddings for unlabelled samples. Specifically, our TES leverages the property that CLIP can generate aligned vision-language features, converting visual embeddings into tokens of the CLIP's text encoder to generate pseudo text embeddings. Besides, we employ a dual-branch framework, through the joint learning and instance consistency of different modality branches, visual and semantic information mutually enhance each other, promoting the interaction and fusion of visual and text embedding space. Our method unlocks the multi-modal potentials of CLIP and outperforms the baseline methods by a large margin on all GCD benchmarks, achieving new state-of-the-art. The code will be released at \url{https://github.com/enguangW/GET}.
Abstract:Non-exemplar class incremental learning aims to learn both the new and old tasks without accessing any training data from the past. This strict restriction enlarges the difficulty of alleviating catastrophic forgetting since all techniques can only be applied to current task data. Considering this challenge, we propose a novel framework of fine-grained knowledge selection and restoration. The conventional knowledge distillation-based methods place too strict constraints on the network parameters and features to prevent forgetting, which limits the training of new tasks. To loose this constraint, we proposed a novel fine-grained selective patch-level distillation to adaptively balance plasticity and stability. Some task-agnostic patches can be used to preserve the decision boundary of the old task. While some patches containing the important foreground are favorable for learning the new task. Moreover, we employ a task-agnostic mechanism to generate more realistic prototypes of old tasks with the current task sample for reducing classifier bias for fine-grained knowledge restoration. Extensive experiments on CIFAR100, TinyImageNet and ImageNet-Subset demonstrate the effectiveness of our method. Code is available at https://github.com/scok30/vit-cil.
Abstract:With the advent of large-scale pre-trained models, interest in adapting and exploiting them for continual learning scenarios has grown. In this paper, we propose an approach to exploiting pre-trained vision-language models (e.g. CLIP) that enables further adaptation instead of only using zero-shot learning of new tasks. We augment a pre-trained CLIP model with additional layers after the Image Encoder or before the Text Encoder. We investigate three different strategies: a Linear Adapter, a Self-attention Adapter, each operating on the image embedding, and Prompt Tuning which instead modifies prompts input to the CLIP text encoder. We also propose a method for parameter retention in the adapter layers that uses a measure of parameter importance to better maintain stability and plasticity during incremental learning. Our experiments demonstrate that the simplest solution -- a single Linear Adapter layer with parameter retention -- produces the best results. Experiments on several conventional benchmarks consistently show a significant margin of improvement over the current state-of-the-art.
Abstract:Class Incremental Learning (CIL) aims to sequentially learn new classes while avoiding catastrophic forgetting of previous knowledge. We propose to use Masked Autoencoders (MAEs) as efficient learners for CIL. MAEs were originally designed to learn useful representations through reconstructive unsupervised learning, and they can be easily integrated with a supervised loss for classification. Moreover, MAEs can reliably reconstruct original input images from randomly selected patches, which we use to store exemplars from past tasks more efficiently for CIL. We also propose a bilateral MAE framework to learn from image-level and embedding-level fusion, which produces better-quality reconstructed images and more stable representations. Our experiments confirm that our approach performs better than the state-of-the-art on CIFAR-100, ImageNet-Subset, and ImageNet-Full. The code is available at https://github.com/scok30/MAE-CIL .
Abstract:Calibration-based methods have dominated RAW image denoising under extremely low-light environments. However, these methods suffer from several main deficiencies: 1) the calibration procedure is laborious and time-consuming, 2) denoisers for different cameras are difficult to transfer, and 3) the discrepancy between synthetic noise and real noise is enlarged by high digital gain. To overcome the above shortcomings, we propose a calibration-free pipeline for Lighting Every Drakness (LED), regardless of the digital gain or camera sensor. Instead of calibrating the noise parameters and training repeatedly, our method could adapt to a target camera only with few-shot paired data and fine-tuning. In addition, well-designed structural modification during both stages alleviates the domain gap between synthetic and real noise without any extra computational cost. With 2 pairs for each additional digital gain (in total 6 pairs) and 0.5% iterations, our method achieves superior performance over other calibration-based methods. Our code is available at https://github.com/Srameo/LED .
Abstract:Data-Free Class Incremental Learning (DFCIL) aims to sequentially learn tasks with access only to data from the current one. DFCIL is of interest because it mitigates concerns about privacy and long-term storage of data, while at the same time alleviating the problem of catastrophic forgetting in incremental learning. In this work, we introduce robust saliency guidance for DFCIL and propose a new framework, which we call RObust Saliency Supervision (ROSS), for mitigating the negative effect of saliency drift. Firstly, we use a teacher-student architecture leveraging low-level tasks to supervise the model with global saliency. We also apply boundary-guided saliency to protect it from drifting across object boundaries at intermediate layers. Finally, we introduce a module for injecting and recovering saliency noise to increase robustness of saliency preservation. Our experiments demonstrate that our method can retain better saliency maps across tasks and achieve state-of-the-art results on the CIFAR-100, Tiny-ImageNet and ImageNet-Subset DFCIL benchmarks. Code will be made publicly available.