Abstract:In this paper we introduce RE-tune, a novel approach for fine-tuning pre-trained Multimodal Biomedical Vision-Language models (VLMs) in Incremental Learning scenarios for multi-label chest disease diagnosis. RE-tune freezes the backbones and only trains simple adaptors on top of the Image and Text encoders of the VLM. By engineering positive and negative text prompts for diseases, we leverage the ability of Large Language Models to steer the training trajectory. We evaluate RE-tune in three realistic incremental learning scenarios: class-incremental, label-incremental, and data-incremental. Our results demonstrate that Biomedical VLMs are natural continual learners and prevent catastrophic forgetting. RE-tune not only achieves accurate multi-label classification results, but also prioritizes patient privacy and it distinguishes itself through exceptional computational efficiency, rendering it highly suitable for broad adoption in real-world healthcare settings.
Abstract:With the ever-growing adoption of AI, its impact on the environment is no longer negligible. Despite the potential that continual learning could have towards Green AI, its environmental sustainability remains relatively uncharted. In this work we aim to gain a systematic understanding of the energy efficiency of continual learning algorithms. To that end, we conducted an extensive set of empirical experiments comparing the energy consumption of recent representation-, prompt-, and exemplar-based continual learning algorithms and two standard baseline (fine tuning and joint training) when used to continually adapt a pre-trained ViT-B/16 foundation model. We performed our experiments on three standard datasets: CIFAR-100, ImageNet-R, and DomainNet. Additionally, we propose a novel metric, the Energy NetScore, which we use measure the algorithm efficiency in terms of energy-accuracy trade-off. Through numerous evaluations varying the number and size of the incremental learning steps, our experiments demonstrate that different types of continual learning algorithms have very different impacts on energy consumption during both training and inference. Although often overlooked in the continual learning literature, we found that the energy consumed during the inference phase is crucial for evaluating the environmental sustainability of continual learning models.
Abstract:Offline Reinforcement Learning (ORL) offers a robust solution to training agents in applications where interactions with the environment must be strictly limited due to cost, safety, or lack of accurate simulation environments. Despite its potential to facilitate deployment of artificial agents in the real world, Offline Reinforcement Learning typically requires very many demonstrations annotated with ground-truth rewards. Consequently, state-of-the-art ORL algorithms can be difficult or impossible to apply in data-scarce scenarios. In this paper we propose a simple but effective Reward Model that can estimate the reward signal from a very limited sample of environment transitions annotated with rewards. Once the reward signal is modeled, we use the Reward Model to impute rewards for a large sample of reward-free transitions, thus enabling the application of ORL techniques. We demonstrate the potential of our approach on several D4RL continuous locomotion tasks. Our results show that, using only 1\% of reward-labeled transitions from the original datasets, our learned reward model is able to impute rewards for the remaining 99\% of the transitions, from which performant agents can be learned using Offline Reinforcement Learning.
Abstract:Offline Reinforcement Learning (ORL) is a promising approach to reduce the high sample complexity of traditional Reinforcement Learning (RL) by eliminating the need for continuous environmental interactions. ORL exploits a dataset of pre-collected transitions and thus expands the range of application of RL to tasks in which the excessive environment queries increase training time and decrease efficiency, such as in modern AAA games. This paper introduces OfflineMania a novel environment for ORL research. It is inspired by the iconic TrackMania series and developed using the Unity 3D game engine. The environment simulates a single-agent racing game in which the objective is to complete the track through optimal navigation. We provide a variety of datasets to assess ORL performance. These datasets, created from policies of varying ability and in different sizes, aim to offer a challenging testbed for algorithm development and evaluation. We further establish a set of baselines for a range of Online RL, ORL, and hybrid Offline to Online RL approaches using our environment.
Abstract:Exemplar-free class-incremental learning using a backbone trained from scratch and starting from a small first task presents a significant challenge for continual representation learning. Prototype-based approaches, when continually updated, face the critical issue of semantic drift due to which the old class prototypes drift to different positions in the new feature space. Through an analysis of prototype-based continual learning, we show that forgetting is not due to diminished discriminative power of the feature extractor, and can potentially be corrected by drift compensation. To address this, we propose Learnable Drift Compensation (LDC), which can effectively mitigate drift in any moving backbone, whether supervised or unsupervised. LDC is fast and straightforward to integrate on top of existing continual learning approaches. Furthermore, we showcase how LDC can be applied in combination with self-supervised CL methods, resulting in the first exemplar-free semi-supervised continual learning approach. We achieve state-of-the-art performance in both supervised and semi-supervised settings across multiple datasets. Code is available at \url{https://github.com/alviur/ldc}.
Abstract:Vision-Language Models (VLMs) demonstrate remarkable zero-shot generalization to unseen tasks, but fall short of the performance of supervised methods in generalizing to downstream tasks with limited data. Prompt learning is emerging as a parameter-efficient method for adapting VLMs, but state-of-the-art approaches require annotated samples. In this paper we propose a novel approach to prompt learning based on unsupervised knowledge distillation from more powerful models. Our approach, which we call Knowledge Distillation Prompt Learning (KDPL), can be integrated into existing prompt learning techniques and eliminates the need for labeled examples during adaptation. Our experiments on more than ten standard benchmark datasets demonstrate that KDPL is very effective at improving generalization of learned prompts for zero-shot domain generalization, zero-shot cross-dataset generalization, and zero-shot base-to-novel class generalization problems. KDPL requires no ground-truth labels for adaptation, and moreover we show that even in the absence of any knowledge of training class names it can be used to effectively transfer knowledge. The code is publicly available at https://github.com/miccunifi/KDPL.
Abstract:In this paper, we address the challenges of automatic metadata annotation in the domain of Galleries, Libraries, Archives, and Museums (GLAMs) by introducing a novel dataset, EUFCC340K, collected from the Europeana portal. Comprising over 340,000 images, the EUFCC340K dataset is organized across multiple facets: Materials, Object Types, Disciplines, and Subjects, following a hierarchical structure based on the Art & Architecture Thesaurus (AAT). We developed several baseline models, incorporating multiple heads on a ConvNeXT backbone for multi-label image tagging on these facets, and fine-tuning a CLIP model with our image text pairs. Our experiments to evaluate model robustness and generalization capabilities in two different test scenarios demonstrate the utility of the dataset in improving multi-label classification tools that have the potential to alleviate cataloging tasks in the cultural heritage sector.
Abstract:Exemplar-Free Class Incremental Learning (EFCIL) aims to learn from a sequence of tasks without having access to previous task data. In this paper, we consider the challenging Cold Start scenario in which insufficient data is available in the first task to learn a high-quality backbone. This is especially challenging for EFCIL since it requires high plasticity, which results in feature drift which is difficult to compensate for in the exemplar-free setting. To address this problem, we propose a simple and effective approach that consolidates feature representations by regularizing drift in directions highly relevant to previous tasks and employs prototypes to reduce task-recency bias. Our method, called Elastic Feature Consolidation (EFC), exploits a tractable second-order approximation of feature drift based on an Empirical Feature Matrix (EFM). The EFM induces a pseudo-metric in feature space which we use to regularize feature drift in important directions and to update Gaussian prototypes used in a novel asymmetric cross entropy loss which effectively balances prototype rehearsal with data from new tasks. Experimental results on CIFAR-100, Tiny-ImageNet, ImageNet-Subset and ImageNet-1K demonstrate that Elastic Feature Consolidation is better able to learn new tasks by maintaining model plasticity and significantly outperform the state-of-the-art.
Abstract:Offline reinforcement learning leverages pre-collected datasets of transitions to train policies. It can serve as effective initialization for online algorithms, enhancing sample efficiency and speeding up convergence. However, when such datasets are limited in size and quality, offline pre-training can produce sub-optimal policies and lead to degraded online reinforcement learning performance. In this paper we propose a model-based data augmentation strategy to maximize the benefits of offline reinforcement learning pre-training and reduce the scale of data needed to be effective. Our approach leverages a world model of the environment trained on the offline dataset to augment states during offline pre-training. We evaluate our approach on a variety of MuJoCo robotic tasks and our results show it can jump-start online fine-tuning and substantially reduce - in some cases by an order of magnitude - the required number of environment interactions.
Abstract:With the advent of large-scale pre-trained models, interest in adapting and exploiting them for continual learning scenarios has grown. In this paper, we propose an approach to exploiting pre-trained vision-language models (e.g. CLIP) that enables further adaptation instead of only using zero-shot learning of new tasks. We augment a pre-trained CLIP model with additional layers after the Image Encoder or before the Text Encoder. We investigate three different strategies: a Linear Adapter, a Self-attention Adapter, each operating on the image embedding, and Prompt Tuning which instead modifies prompts input to the CLIP text encoder. We also propose a method for parameter retention in the adapter layers that uses a measure of parameter importance to better maintain stability and plasticity during incremental learning. Our experiments demonstrate that the simplest solution -- a single Linear Adapter layer with parameter retention -- produces the best results. Experiments on several conventional benchmarks consistently show a significant margin of improvement over the current state-of-the-art.