Abstract:Recent research identified a temporary performance drop on previously learned tasks when transitioning to a new one. This drop is called the stability gap and has great consequences for continual learning: it complicates the direct employment of continually learning since the worse-case performance at task-boundaries is dramatic, it limits its potential as an energy-efficient training paradigm, and finally, the stability drop could result in a reduced final performance of the algorithm. In this paper, we show that the stability gap also occurs when applying joint incremental training of homogeneous tasks. In this scenario, the learner continues training on the same data distribution and has access to all data from previous tasks. In addition, we show that in this scenario, there exists a low-loss linear path to the next minima, but that SGD optimization does not choose this path. We perform further analysis including a finer batch-wise analysis which could provide insights towards potential solution directions.
Abstract:Exemplar-Free Class Incremental Learning (EFCIL) aims to learn from a sequence of tasks without having access to previous task data. In this paper, we consider the challenging Cold Start scenario in which insufficient data is available in the first task to learn a high-quality backbone. This is especially challenging for EFCIL since it requires high plasticity, which results in feature drift which is difficult to compensate for in the exemplar-free setting. To address this problem, we propose a simple and effective approach that consolidates feature representations by regularizing drift in directions highly relevant to previous tasks and employs prototypes to reduce task-recency bias. Our method, called Elastic Feature Consolidation (EFC), exploits a tractable second-order approximation of feature drift based on an Empirical Feature Matrix (EFM). The EFM induces a pseudo-metric in feature space which we use to regularize feature drift in important directions and to update Gaussian prototypes used in a novel asymmetric cross entropy loss which effectively balances prototype rehearsal with data from new tasks. Experimental results on CIFAR-100, Tiny-ImageNet, ImageNet-Subset and ImageNet-1K demonstrate that Elastic Feature Consolidation is better able to learn new tasks by maintaining model plasticity and significantly outperform the state-of-the-art.