Abstract:Offline Reinforcement Learning (ORL) is a promising approach to reduce the high sample complexity of traditional Reinforcement Learning (RL) by eliminating the need for continuous environmental interactions. ORL exploits a dataset of pre-collected transitions and thus expands the range of application of RL to tasks in which the excessive environment queries increase training time and decrease efficiency, such as in modern AAA games. This paper introduces OfflineMania a novel environment for ORL research. It is inspired by the iconic TrackMania series and developed using the Unity 3D game engine. The environment simulates a single-agent racing game in which the objective is to complete the track through optimal navigation. We provide a variety of datasets to assess ORL performance. These datasets, created from policies of varying ability and in different sizes, aim to offer a challenging testbed for algorithm development and evaluation. We further establish a set of baselines for a range of Online RL, ORL, and hybrid Offline to Online RL approaches using our environment.
Abstract:Offline reinforcement learning leverages pre-collected datasets of transitions to train policies. It can serve as effective initialization for online algorithms, enhancing sample efficiency and speeding up convergence. However, when such datasets are limited in size and quality, offline pre-training can produce sub-optimal policies and lead to degraded online reinforcement learning performance. In this paper we propose a model-based data augmentation strategy to maximize the benefits of offline reinforcement learning pre-training and reduce the scale of data needed to be effective. Our approach leverages a world model of the environment trained on the offline dataset to augment states during offline pre-training. We evaluate our approach on a variety of MuJoCo robotic tasks and our results show it can jump-start online fine-tuning and substantially reduce - in some cases by an order of magnitude - the required number of environment interactions.