Abstract:Sequential recommender systems (SRSs) aim to predict the subsequent items which may interest users via comprehensively modeling users' complex preference embedded in the sequence of user-item interactions. However, most of existing SRSs often model users' single low-level preference based on item ID information while ignoring the high-level preference revealed by item attribute information, such as item category. Furthermore, they often utilize limited sequence context information to predict the next item while overlooking richer inter-item semantic relations. To this end, in this paper, we proposed a novel hierarchical preference modeling framework to substantially model the complex low- and high-level preference dynamics for accurate sequential recommendation. Specifically, in the framework, a novel dual-transformer module and a novel dual contrastive learning scheme have been designed to discriminatively learn users' low- and high-level preference and to effectively enhance both low- and high-level preference learning respectively. In addition, a novel semantics-enhanced context embedding module has been devised to generate more informative context embedding for further improving the recommendation performance. Extensive experiments on six real-world datasets have demonstrated both the superiority of our proposed method over the state-of-the-art ones and the rationality of our design.
Abstract:Sequential recommendation aims to predict the next item which interests users via modeling their interest in items over time. Most of the existing works on sequential recommendation model users' dynamic interest in specific items while overlooking users' static interest revealed by some static attribute information of items, e.g., category, or brand. Moreover, existing works often only consider the positive excitation of a user's historical interactions on his/her next choice on candidate items while ignoring the commonly existing negative excitation, resulting in insufficient modeling dynamic interest. The overlook of static interest and negative excitation will lead to incomplete interest modeling and thus impede the recommendation performance. To this end, in this paper, we propose modeling both static interest and negative excitation for dynamic interest to further improve the recommendation performance. Accordingly, we design a novel Static-Dynamic Interest Learning (SDIL) framework featured with a novel Temporal Positive and Negative Excitation Modeling (TPNE) module for accurate sequential recommendation. TPNE is specially designed for comprehensively modeling dynamic interest based on temporal positive and negative excitation learning. Extensive experiments on three real-world datasets show that SDIL can effectively capture both static and dynamic interest and outperforms state-of-the-art baselines.
Abstract:Recent years have witnessed the remarkable success of recommendation systems (RSs) in alleviating the information overload problem. As a new paradigm of RSs, session-based recommendation (SR) specializes in users' short-term preference capture and aims to provide a more dynamic and timely recommendation based on the ongoing interacted actions. In this survey, we will give a comprehensive overview of the recent works on SR. First, we clarify the definitions of various SR tasks and introduce the characteristics of session-based recommendation against other recommendation tasks. Then, we summarize the existing methods in two categories: sequential neural network based methods and graph neural network (GNN) based methods. The standard frameworks and technical are also introduced. Finally, we discuss the challenges of SR and new research directions in this area.
Abstract:Spatiotemporal data analysis is pivotal across various domains, including transportation, meteorology, and healthcare. However, the data collected in real-world scenarios often suffers incompleteness due to sensor malfunctions and network transmission errors. Spatiotemporal imputation endeavours to predict missing values by exploiting the inherent spatial and temporal dependencies present in the observed data. Traditional approaches, which rely on classical statistical and machine learning techniques, are often inadequate, particularly when the data fails to meet strict distributional assumptions. In contrast, recent deep learning-based methods, leveraging graph and recurrent neural networks, have demonstrated enhanced efficacy. Nonetheless, these approaches are prone to error accumulation. Generative models have been increasingly adopted to circumvent the reliance on potentially inaccurate historical imputed values for future predictions. These models grapple with the challenge of producing unstable results, a particular issue in diffusion-based models. We aim to address these challenges by designing conditional features to guide the generative process and expedite training. Specifically, we introduce C$^2$TSD, a novel approach incorporating trend and seasonal information as conditional features and employing contrastive learning to improve model generalizability. The extensive experiments on three real-world datasets demonstrate the superior performance of C$^2$TSD over various state-of-the-art baselines.
Abstract:Trajectory prediction is fundamental to various intelligent technologies, such as autonomous driving and robotics. The motion prediction of pedestrians and vehicles helps emergency braking, reduces collisions, and improves traffic safety. Current trajectory prediction research faces problems of complex social interactions, high dynamics and multi-modality. Especially, it still has limitations in long-time prediction. We propose Attention-aware Social Graph Transformer Networks for multi-modal trajectory prediction. We combine Graph Convolutional Networks and Transformer Networks by generating stable resolution pseudo-images from Spatio-temporal graphs through a designed stacking and interception method. Furthermore, we design the attention-aware module to handle social interaction information in scenarios involving mixed pedestrian-vehicle traffic. Thus, we maintain the advantages of the Graph and Transformer, i.e., the ability to aggregate information over an arbitrary number of neighbors and the ability to perform complex time-dependent data processing. We conduct experiments on datasets involving pedestrian, vehicle, and mixed trajectories, respectively. Our results demonstrate that our model minimizes displacement errors across various metrics and significantly reduces the likelihood of collisions. It is worth noting that our model effectively reduces the final displacement error, illustrating the ability of our model to predict for a long time.
Abstract:The analysis of spatiotemporal data is increasingly utilized across diverse domains, including transportation, healthcare, and meteorology. In real-world settings, such data often contain missing elements due to issues like sensor malfunctions and data transmission errors. The objective of spatiotemporal imputation is to estimate these missing values by understanding the inherent spatial and temporal relationships in the observed multivariate time series. Traditionally, spatiotemporal imputation has relied on specific, intricate architectures designed for this purpose, which suffer from limited applicability and high computational complexity. In contrast, our approach integrates pre-trained large language models (LLMs) into spatiotemporal imputation, introducing a groundbreaking framework, GATGPT. This framework merges a graph attention mechanism with LLMs. We maintain most of the LLM parameters unchanged to leverage existing knowledge for learning temporal patterns, while fine-tuning the upper layers tailored to various applications. The graph attention component enhances the LLM's ability to understand spatial relationships. Through tests on three distinct real-world datasets, our innovative approach demonstrates comparable results to established deep learning benchmarks.
Abstract:Adversarial attacks, e.g., adversarial perturbations of the input and adversarial samples, pose significant challenges to machine learning and deep learning techniques, including interactive recommendation systems. The latent embedding space of those techniques makes adversarial attacks difficult to detect at an early stage. Recent advance in causality shows that counterfactual can also be considered one of ways to generate the adversarial samples drawn from different distribution as the training samples. We propose to explore adversarial examples and attack agnostic detection on reinforcement learning-based interactive recommendation systems. We first craft different types of adversarial examples by adding perturbations to the input and intervening on the casual factors. Then, we augment recommendation systems by detecting potential attacks with a deep learning-based classifier based on the crafted data. Finally, we study the attack strength and frequency of adversarial examples and evaluate our model on standard datasets with multiple crafting methods. Our extensive experiments show that most adversarial attacks are effective, and both attack strength and attack frequency impact the attack performance. The strategically-timed attack achieves comparative attack performance with only 1/3 to 1/2 attack frequency. Besides, our black-box detector trained with one crafting method has the generalization ability over several other crafting methods.
Abstract:Zero-Shot Learning (ZSL) aims to transfer learned knowledge from observed classes to unseen classes via semantic correlations. A promising strategy is to learn a global-local representation that incorporates global information with extra localities (i.e., small parts/regions of inputs). However, existing methods discover localities based on explicit features without digging into the inherent properties and relationships among regions. In this work, we propose a novel Entropy-guided Reinforced Partial Convolutional Network (ERPCNet), which extracts and aggregates localities progressively based on semantic relevance and visual correlations without human-annotated regions. ERPCNet uses reinforced partial convolution and entropy guidance; it not only discovers global-cooperative localities dynamically but also converges faster for policy gradient optimization. We conduct extensive experiments to demonstrate ERPCNet's performance through comparisons with state-of-the-art methods under ZSL and Generalized Zero-Shot Learning (GZSL) settings on four benchmark datasets. We also show ERPCNet is time efficient and explainable through visualization analysis.
Abstract:Online recommendation requires handling rapidly changing user preferences. Deep reinforcement learning (DRL) is gaining interest as an effective means of capturing users' dynamic interest during interactions with recommender systems. However, it is challenging to train a DRL agent, due to large state space (e.g., user-item rating matrix and user profiles), action space (e.g., candidate items), and sparse rewards. Existing studies encourage the agent to learn from past experience via experience replay (ER). They adapt poorly to the complex environment of online recommender systems and are inefficient in determining an optimal strategy from past experience. To address these issues, we design a novel state-aware experience replay model, which uses locality-sensitive hashing to map high dimensional data into low-dimensional representations and a prioritized reward-driven strategy to replay more valuable experience at a higher chance. Our model can selectively pick the most relevant and salient experiences and recommend the agent with the optimal policy. Experiments on three online simulation platforms demonstrate our model' feasibility and superiority toseveral existing experience replay methods.
Abstract:In light of the emergence of deep reinforcement learning (DRL) in recommender systems research and several fruitful results in recent years, this survey aims to provide a timely and comprehensive overview of the recent trends of deep reinforcement learning in recommender systems. We start with the motivation of applying DRL in recommender systems. Then, we provide a taxonomy of current DRL-based recommender systems and a summary of existing methods. We discuss emerging topics and open issues, and provide our perspective on advancing the domain. This survey serves as introductory material for readers from academia and industry into the topic and identifies notable opportunities for further research.