Abstract:Traditional robot simulators focus on physical process modeling and realistic rendering, often suffering from high computational costs, inefficiencies, and limited adaptability. To handle this issue, we propose Behavior Simulation in robotics to emphasize checking the behavior logic of robots and achieving sufficient alignment between the outcome of robot actions and real scenarios. In this paper, we introduce BeSimulator, a modular and novel LLM-powered framework, as an attempt towards behavior simulation in the context of text-based environments. By constructing text-based virtual environments and performing semantic-level simulation, BeSimulator can generalize across scenarios and achieve long-horizon complex simulation. Inspired by human cognition processes, it employs a "consider-decide-capture-transfer" methodology, termed Chain of Behavior Simulation, which excels at analyzing action feasibility and state transitions. Additionally, BeSimulator incorporates code-driven reasoning to enable arithmetic operations and enhance reliability, as well as integrates reflective feedback to refine simulation. Based on our manually constructed behavior-tree-based simulation benchmark BTSIMBENCH, our experiments show a significant performance improvement in behavior simulation compared to baselines, ranging from 14.7% to 26.6%.
Abstract:Medical image segmentation (MIS) aims to finely segment various organs. It requires grasping global information from both parts and the entire image for better segmenting, and clinically there are often certain requirements for segmentation efficiency. Convolutional neural networks (CNNs) have made considerable achievements in MIS. However, they are difficult to fully collect global context information and their pooling layer may cause information loss. Capsule networks, which combine the benefits of CNNs while taking into account additional information such as relative location that CNNs do not, have lately demonstrated some advantages in MIS. Vision Transformer (ViT) employs transformers in visual tasks. Transformer based on attention mechanism has excellent global inductive modeling capabilities and is expected to capture longrange information. Moreover, there have been resent studies on making ViT more lightweight to minimize model complexity and increase efficiency. In this paper, we propose a U-shaped 3D encoder-decoder network named 3D-EffiViTCaps, which combines 3D capsule blocks with 3D EfficientViT blocks for MIS. Our encoder uses capsule blocks and EfficientViT blocks to jointly capture local and global semantic information more effectively and efficiently with less information loss, while the decoder employs CNN blocks and EfficientViT blocks to catch ffner details for segmentation. We conduct experiments on various datasets, including iSeg-2017, Hippocampus and Cardiac to verify the performance and efficiency of 3D-EffiViTCaps, which performs better than previous 3D CNN-based, 3D Capsule-based and 3D Transformer-based models. We further implement a series of ablation experiments on the main blocks. Our code is available at: https://github.com/HidNeuron/3D-EffiViTCaps.
Abstract:Spatiotemporal data analysis is pivotal across various domains, including transportation, meteorology, and healthcare. However, the data collected in real-world scenarios often suffers incompleteness due to sensor malfunctions and network transmission errors. Spatiotemporal imputation endeavours to predict missing values by exploiting the inherent spatial and temporal dependencies present in the observed data. Traditional approaches, which rely on classical statistical and machine learning techniques, are often inadequate, particularly when the data fails to meet strict distributional assumptions. In contrast, recent deep learning-based methods, leveraging graph and recurrent neural networks, have demonstrated enhanced efficacy. Nonetheless, these approaches are prone to error accumulation. Generative models have been increasingly adopted to circumvent the reliance on potentially inaccurate historical imputed values for future predictions. These models grapple with the challenge of producing unstable results, a particular issue in diffusion-based models. We aim to address these challenges by designing conditional features to guide the generative process and expedite training. Specifically, we introduce C$^2$TSD, a novel approach incorporating trend and seasonal information as conditional features and employing contrastive learning to improve model generalizability. The extensive experiments on three real-world datasets demonstrate the superior performance of C$^2$TSD over various state-of-the-art baselines.
Abstract:Traditional convolutional neural networks are limited to handling Euclidean space data, overlooking the vast realm of real-life scenarios represented as graph data, including transportation networks, social networks, and reference networks. The pivotal step in transferring convolutional neural networks to graph data analysis and processing lies in the construction of graph convolutional operators and graph pooling operators. This comprehensive review article delves into the world of graph convolutional neural networks. Firstly, it elaborates on the fundamentals of graph convolutional neural networks. Subsequently, it elucidates the graph neural network models based on attention mechanisms and autoencoders, summarizing their application in node classification, graph classification, and link prediction along with the associated datasets.
Abstract:Time series analysis plays a vital role in various applications, for instance, healthcare, weather prediction, disaster forecast, etc. However, to obtain sufficient shapelets by a feature network is still challenging. To this end, we propose a novel robust temporal feature network (RTFN) that contains temporal feature networks and attentional LSTM networks. The temporal feature networks are built to extract basic features from input data while the attentional LSTM networks are devised to capture complicated shapelets and relationships to enrich features. In experiments, we embed RTFN into supervised structure as a feature extraction network and into unsupervised clustering as an encoder, respectively. The results show that the RTFN-based supervised structure is a winner of 40 out of 85 datasets and the RTFN-based unsupervised clustering performs the best on 4 out of 11 datasets in the UCR2018 archive.
Abstract:Dynamic routing in software-defined networking (SDN) can be viewed as a centralized decision-making problem. Most of the existing deep reinforcement learning (DRL) agents can address it, thanks to the deep neural network (DNN)incorporated. However, fully-connected feed-forward neural network (FFNN) is usually adopted, where spatial correlation and temporal variation of traffic flows are ignored. This drawback usually leads to significantly high computational complexity due to large number of training parameters. To overcome this problem, we propose a novel model-free framework for dynamic routing in SDN, which is referred to as spatio-temporal deterministic policy gradient (STDPG) agent. Both the actor and critic networks are based on identical DNN structure, where a combination of convolutional neural network (CNN) and long short-term memory network (LSTM) with temporal attention mechanism, CNN-LSTM-TAM, is devised. By efficiently exploiting spatial and temporal features, CNNLSTM-TAM helps the STDPG agent learn better from the experience transitions. Furthermore, we employ the prioritized experience replay (PER) method to accelerate the convergence of model training. The experimental results show that STDPG can automatically adapt for current network environment and achieve robust convergence. Compared with a number state-ofthe-art DRL agents, STDPG achieves better routing solutions in terms of the average end-to-end delay.