Abstract:Natural Language Processing (NLP) is widely used to supply summarization ability from long context to structured information. However, extracting structured knowledge from scientific text by NLP models remains a challenge because of its domain-specific nature to complex data preprocessing and the granularity of multi-layered device-level information. To address this, we introduce ByteScience, a non-profit cloud-based auto fine-tuned Large Language Model (LLM) platform, which is designed to extract structured scientific data and synthesize new scientific knowledge from vast scientific corpora. The platform capitalizes on DARWIN, an open-source, fine-tuned LLM dedicated to natural science. The platform was built on Amazon Web Services (AWS) and provides an automated, user-friendly workflow for custom model development and data extraction. The platform achieves remarkable accuracy with only a small amount of well-annotated articles. This innovative tool streamlines the transition from the science literature to structured knowledge and data and benefits the advancements in natural informatics.
Abstract:Exploring the predictive capabilities of language models in material science is an ongoing interest. This study investigates the application of language model embeddings to enhance material property prediction in materials science. By evaluating various contextual embedding methods and pre-trained models, including Bidirectional Encoder Representations from Transformers (BERT) and Generative Pre-trained Transformers (GPT), we demonstrate that domain-specific models, particularly MatBERT significantly outperform general-purpose models in extracting implicit knowledge from compound names and material properties. Our findings reveal that information-dense embeddings from the third layer of MatBERT, combined with a context-averaging approach, offer the most effective method for capturing material-property relationships from the scientific literature. We also identify a crucial "tokenizer effect," highlighting the importance of specialized text processing techniques that preserve complete compound names while maintaining consistent token counts. These insights underscore the value of domain-specific training and tokenization in materials science applications and offer a promising pathway for accelerating the discovery and development of new materials through AI-driven approaches.
Abstract:The use of question-answer (QA) pairs for training and evaluating large language models (LLMs) has attracted considerable attention. Yet few available QA datasets are based on knowledge from the scientific literature. Here we bridge this gap by presenting Automatic Generation of Scientific Question Answers (SciQAG), a framework for automatic generation and evaluation of scientific QA pairs sourced from published scientific literature. We fine-tune an open-source LLM to generate \num{960000} scientific QA pairs from full-text scientific papers and propose a five-dimensional metric to evaluate the quality of the generated QA pairs. We show via LLM-based evaluation that the generated QA pairs consistently achieve an average score of 2.5 out of 3 across five dimensions, indicating that our framework can distill key knowledge from papers into high-quality QA pairs at scale. We make the dataset, models, and evaluation codes publicly available.
Abstract:Emerging tools bring forth fresh approaches to work, and the field of natural science is no different. In natural science, traditional manual, serial, and labour-intensive work is being augmented by automated, parallel, and iterative processes driven by artificial intelligence-based experimental automation and more. To add new capabilities in natural science, enabling the acceleration and enrichment of automation of the discovery process, we present DARWIN, a series of tailored LLMs for natural science, mainly in physics, chemistry, and material science. This series relies on open-source LLM, incorporating structured and unstructured scientific knowledge from public datasets and literature. We fine-tuned the models using over 60,000 instruction data points, emphasizing factual correctness. During the fine-tuning, we introduce the Scientific Instruction Generation (SIG) model, automating instruction generation from scientific texts. This eliminates the need for manual extraction or domain-specific knowledge graphs and efficiently injects scientific knowledge into the model. We also explore multi-task training strategies, revealing interconnections between scientific tasks. DARWIN series not only achieves state-of-the-art results on various scientific tasks but also diminishes reliance on closed-source AI models. Our research showcases the ability of LLM in the scientific domain, with the overarching goal of fostering prosperity within the broader AI for science community.
Abstract:The amount of data has growing significance in exploring cutting-edge materials and a number of datasets have been generated either by hand or automated approaches. However, the materials science field struggles to effectively utilize the abundance of data, especially in applied disciplines where materials are evaluated based on device performance rather than their properties. This article presents a new natural language processing (NLP) task called structured information inference (SII) to address the complexities of information extraction at the device level in materials science. We accomplished this task by tuning GPT-3 on an existing perovskite solar cell FAIR (Findable, Accessible, Interoperable, Reusable) dataset with 91.8% F1-score and extended the dataset with data published since its release. The produced data is formatted and normalized, enabling its direct utilization as input in subsequent data analysis. This feature empowers materials scientists to develop models by selecting high-quality review articles within their domain. Additionally, we designed experiments to predict the electrical performance of solar cells and design materials or devices with targeted parameters using large language models (LLMs). Our results demonstrate comparable performance to traditional machine learning methods without feature selection, highlighting the potential of LLMs to acquire scientific knowledge and design new materials akin to materials scientists.
Abstract:The material science literature contains up-to-date and comprehensive scientific knowledge of materials. However, their content is unstructured and diverse, resulting in a significant gap in providing sufficient information for material design and synthesis. To this end, we used natural language processing (NLP) and computer vision (CV) techniques based on convolutional neural networks (CNN) to discover valuable experimental-based information about nanomaterials and synthesis methods in energy-material-related publications. Our first system, TextMaster, extracts opinions from texts and classifies them into challenges and opportunities, achieving 94% and 92% accuracy, respectively. Our second system, GraphMaster, realizes data extraction of tables and figures from publications with 98.3\% classification accuracy and 4.3% data extraction mean square error. Our results show that these systems could assess the suitability of materials for a certain application by evaluation of synthesis insights and case analysis with detailed references. This work offers a fresh perspective on mining knowledge from scientific literature, providing a wide swatch to accelerate nanomaterial research through CNN.
Abstract:This paper reviews the development of Chinese word segmentation (CWS) in the most recent decade, 2007-2017. Special attention was paid to the deep learning technologies that has already permeated into most areas of natural language processing (NLP). The basic view we have arrived at is that compared to traditional supervised learning methods, neural network based methods have not shown any superior performance. The most critical challenge still lies on balancing of recognition of in-vocabulary (IV) and out-of-vocabulary (OOV) words. However, as neural models have potentials to capture the essential linguistic structure of natural language, we are optimistic about significant progresses may arrive in the near future.
Abstract:Semantic parsing, i.e., the automatic derivation of meaning representation such as an instantiated predicate-argument structure for a sentence, plays a critical role in deep processing of natural language. Unlike all other top systems of semantic dependency parsing that have to rely on a pipeline framework to chain up a series of submodels each specialized for a specific subtask, the one presented in this article integrates everything into one model, in hopes of achieving desirable integrity and practicality for real applications while maintaining a competitive performance. This integrative approach tackles semantic parsing as a word pair classification problem using a maximum entropy classifier. We leverage adaptive pruning of argument candidates and large-scale feature selection engineering to allow the largest feature space ever in use so far in this field, it achieves a state-of-the-art performance on the evaluation data set for CoNLL-2008 shared task, on top of all but one top pipeline system, confirming its feasibility and effectiveness.