Abstract:Intracranial pressure (ICP) elevation poses severe threats to cerebral function, thus necessitating monitoring for timely intervention. While lumbar puncture is the gold standard for ICP measurement, its invasiveness and associated risks drive the need for non-invasive alternatives. Optic nerve sheath diameter (ONSD) has emerged as a promising biomarker, as elevated ICP directly correlates with increased ONSD. However, current clinical practices for ONSD measurement suffer from inconsistency in manual operation, subjectivity in optimal view selection, and variability in thresholding, limiting their reliability. To address these challenges, we introduce a fully automatic two-stage framework for ICP grading, integrating keyframe identification, ONSD measurement and clinical data. Specifically, the fundus ultrasound video processing stage performs frame-level anatomical segmentation, rule-based keyframe identification guided by an international consensus statement, and precise ONSD measurement. The intracranial pressure grading stage then fuses ONSD metrics with clinical features to enable the prediction of ICP grades, thereby demonstrating an innovative blend of interpretable ultrasound analysis and multi-source data integration for objective clinical evaluation. Experimental results demonstrate that our method achieves a validation accuracy of $0.845 \pm 0.071$ (with standard deviation from five-fold cross-validation) and an independent test accuracy of 0.786, significantly outperforming conventional threshold-based method ($0.637 \pm 0.111$ validation accuracy, $0.429$ test accuracy). Through effectively reducing operator variability and integrating multi-source information, our framework establishes a reliable non-invasive approach for clinical ICP evaluation, holding promise for improving patient management in acute neurological conditions.
Abstract:Monocular depth estimation using Convolutional Neural Networks (CNNs) has shown impressive performance in outdoor driving scenes. However, self-supervised learning of indoor depth from monocular sequences is quite challenging for researchers because of the following two main reasons. One is the large areas of low-texture regions and the other is the complex ego-motion on indoor training datasets. In this work, our proposed method, named IndoorDepth, consists of two innovations. In particular, we first propose a novel photometric loss with improved structural similarity (SSIM) function to tackle the challenge from low-texture regions. Moreover, in order to further mitigate the issue of inaccurate ego-motion prediction, multiple photometric losses at different stages are used to train a deeper pose network with two residual pose blocks. Subsequent ablation study can validate the effectiveness of each new idea. Experiments on the NYUv2 benchmark demonstrate that our IndoorDepth outperforms the previous state-of-the-art methods by a large margin. In addition, we also validate the generalization ability of our method on ScanNet dataset. Code is availabe at https://github.com/fcntes/IndoorDepth.
Abstract:Emerging tools bring forth fresh approaches to work, and the field of natural science is no different. In natural science, traditional manual, serial, and labour-intensive work is being augmented by automated, parallel, and iterative processes driven by artificial intelligence-based experimental automation and more. To add new capabilities in natural science, enabling the acceleration and enrichment of automation of the discovery process, we present DARWIN, a series of tailored LLMs for natural science, mainly in physics, chemistry, and material science. This series relies on open-source LLM, incorporating structured and unstructured scientific knowledge from public datasets and literature. We fine-tuned the models using over 60,000 instruction data points, emphasizing factual correctness. During the fine-tuning, we introduce the Scientific Instruction Generation (SIG) model, automating instruction generation from scientific texts. This eliminates the need for manual extraction or domain-specific knowledge graphs and efficiently injects scientific knowledge into the model. We also explore multi-task training strategies, revealing interconnections between scientific tasks. DARWIN series not only achieves state-of-the-art results on various scientific tasks but also diminishes reliance on closed-source AI models. Our research showcases the ability of LLM in the scientific domain, with the overarching goal of fostering prosperity within the broader AI for science community.