Abstract:These recent years have witnessed that convolutional neural network (CNN)-based methods for detecting infrared small targets have achieved outstanding performance. However, these methods typically employ standard convolutions, neglecting to consider the spatial characteristics of the pixel distribution of infrared small targets. Therefore, we propose a novel pinwheel-shaped convolution (PConv) as a replacement for standard convolutions in the lower layers of the backbone network. PConv better aligns with the pixel Gaussian spatial distribution of dim small targets, enhances feature extraction, significantly increases the receptive field, and introduces only a minimal increase in parameters. Additionally, while recent loss functions combine scale and location losses, they do not adequately account for the varying sensitivity of these losses across different target scales, limiting detection performance on dim-small targets. To overcome this, we propose a scale-based dynamic (SD) Loss that dynamically adjusts the influence of scale and location losses based on target size, improving the network's ability to detect targets of varying scales. We construct a new benchmark, SIRST-UAVB, which is the largest and most challenging dataset to date for real-shot single-frame infrared small target detection. Lastly, by integrating PConv and SD Loss into the latest small target detection algorithms, we achieved significant performance improvements on IRSTD-1K and our SIRST-UAVB dataset, validating the effectiveness and generalizability of our approach. Code -- https://github.com/JN-Yang/PConv-SDloss-Data
Abstract:Traffic forecasting is an important problem in the operation and optimisation of transportation systems. State-of-the-art solutions train machine learning models by minimising the mean forecasting errors on the training data. The trained models often favour periodic events instead of aperiodic ones in their prediction results, as periodic events often prevail in the training data. While offering critical optimisation opportunities, aperiodic events such as traffic incidents may be missed by the existing models. To address this issue, we propose DualCast -- a model framework to enhance the learning capability of traffic forecasting models, especially for aperiodic events. DualCast takes a dual-branch architecture, to disentangle traffic signals into two types, one reflecting intrinsic {spatial-temporal} patterns and the other reflecting external environment contexts including aperiodic events. We further propose a cross-time attention mechanism, to capture high-order spatial-temporal relationships from both periodic and aperiodic patterns. DualCast is versatile. We integrate it with recent traffic forecasting models, consistently reducing their forecasting errors by up to 9.6% on multiple real datasets.
Abstract:Spatial-temporal forecasting plays an important role in many real-world applications, such as traffic forecasting, air pollutant forecasting, crowd-flow forecasting, and so on. State-of-the-art spatial-temporal forecasting models take data-driven approaches and rely heavily on data availability. Such models suffer from accuracy issues when data is incomplete, which is common in reality due to the heavy costs of deploying and maintaining sensors for data collection. A few recent studies attempted to address the issue of incomplete data. They typically assume some data availability in a region of interest either for a short period or at a few locations. In this paper, we further study spatial-temporal forecasting for a region of interest without any historical observations, to address scenarios such as unbalanced region development, progressive deployment of sensors or lack of open data. We propose a model named STSM for the task. The model takes a contrastive learning-based approach to learn spatial-temporal patterns from adjacent regions that have recorded data. Our key insight is to learn from the locations that resemble those in the region of interest, and we propose a selective masking strategy to enable the learning. As a result, our model outperforms adapted state-of-the-art models, reducing errors consistently over both traffic and air pollutant forecasting tasks. The source code is available at https://github.com/suzy0223/STSM.