Abstract:Quantum machine learning (QML) is a rapidly growing field that combines quantum computing principles with traditional machine learning. It seeks to revolutionize machine learning by harnessing the unique capabilities of quantum mechanics and employs machine learning techniques to advance quantum computing research. This paper introduces quantum computing for the machine learning paradigm, where variational quantum circuits (VQC) are used to develop QML architectures on noisy intermediate-scale quantum (NISQ) devices. We discuss machine learning for the quantum computing paradigm, showcasing our recent theoretical and empirical findings. In particular, we delve into future directions for studying QML, exploring the potential industrial impacts of QML research.
Abstract:Quantum Machine Learning (QML) offers tremendous potential but is currently limited by the availability of qubits. We introduce an innovative approach that utilizes pre-trained neural networks to enhance Variational Quantum Circuits (VQC). This technique effectively separates approximation error from qubit count and removes the need for restrictive conditions, making QML more viable for real-world applications. Our method significantly improves parameter optimization for VQC while delivering notable gains in representation and generalization capabilities, as evidenced by rigorous theoretical analysis and extensive empirical testing on quantum dot classification tasks. Moreover, our results extend to applications such as human genome analysis, demonstrating the broad applicability of our approach. By addressing the constraints of current quantum hardware, our work paves the way for a new era of advanced QML applications, unlocking the full potential of quantum computing in fields such as machine learning, materials science, medicine, mimetics, and various interdisciplinary areas.
Abstract:Identifying and utilising various biomarkers for tracking Alzheimer's disease (AD) progression have received many recent attentions and enable helping clinicians make the prompt decisions. Traditional progression models focus on extracting morphological biomarkers in regions of interest (ROIs) from MRI/PET images, such as regional average cortical thickness and regional volume. They are effective but ignore the relationships between brain ROIs over time, which would lead to synergistic deterioration. For exploring the synergistic deteriorating relationship between these biomarkers, in this paper, we propose a novel spatio-temporal similarity measure based multi-task learning approach for effectively predicting AD progression and sensitively capturing the critical relationships between biomarkers. Specifically, we firstly define a temporal measure for estimating the magnitude and velocity of biomarker change over time, which indicate a changing trend(temporal). Converting this trend into the vector, we then compare this variability between biomarkers in a unified vector space(spatial). The experimental results show that compared with directly ROI based learning, our proposed method is more effective in predicting disease progression. Our method also enables performing longitudinal stability selection to identify the changing relationships between biomarkers, which play a key role in disease progression. We prove that the synergistic deteriorating biomarkers between cortical volumes or surface areas have a significant effect on the cognitive prediction.
Abstract:Quantum federated learning (QFL) is a quantum extension of the classical federated learning model across multiple local quantum devices. An efficient optimization algorithm is always expected to minimize the communication overhead among different quantum participants. In this work, we propose an efficient optimization algorithm, namely federated quantum natural gradient descent (FQNGD), and further, apply it to a QFL framework that is composed of a variational quantum circuit (VQC)-based quantum neural networks (QNN). Compared with stochastic gradient descent methods like Adam and Adagrad, the FQNGD algorithm admits much fewer training iterations for the QFL to get converged. Moreover, it can significantly reduce the total communication overhead among local quantum devices. Our experiments on a handwritten digit classification dataset justify the effectiveness of the FQNGD for the QFL framework in terms of a faster convergence rate on the training set and higher accuracy on the test set.
Abstract:We propose an ensemble learning framework with Poisson sub-sampling to effectively train a collection of teacher models to issue some differential privacy (DP) guarantee for training data. Through boosting under DP, a student model derived from the training data suffers little model degradation from the models trained with no privacy protection. Our proposed solution leverages upon two mechanisms, namely: (i) a privacy budget amplification via Poisson sub-sampling to train a target prediction model that requires less noise to achieve a same level of privacy budget, and (ii) a combination of the sub-sampling technique and an ensemble teacher-student learning framework that introduces DP-preserving noise at the output of the teacher models and transfers DP-preserving properties via noisy labels. Privacy-preserving student models are then trained with the noisy labels to learn the knowledge with DP-protection from the teacher model ensemble. Experimental evidences on spoken command recognition and continuous speech recognition of Mandarin speech show that our proposed framework greatly outperforms existing DP-preserving algorithms in both speech processing tasks.
Abstract:The noisy intermediate-scale quantum (NISQ) devices enable the implementation of the variational quantum circuit (VQC) for quantum neural networks (QNN). Although the VQC-based QNN has succeeded in many machine learning tasks, the representation and generalization powers of VQC still require further investigation, particularly when the dimensionality reduction of classical inputs is concerned. In this work, we first put forth an end-to-end quantum neural network, namely, TTN-VQC, which consists of a quantum tensor network based on a tensor-train network (TTN) for dimensionality reduction and a VQC for functional regression. Then, we aim at the error performance analysis for the TTN-VQC in terms of representation and generalization powers. We also characterize the optimization properties of TTN-VQC by leveraging the Polyak-Lojasiewicz (PL) condition. Moreover, we conduct the experiments of functional regression on a handwritten digit classification dataset to justify our theoretical analysis.
Abstract:This work focuses on designing low complexity hybrid tensor networks by considering trade-offs between the model complexity and practical performance. Firstly, we exploit a low-rank tensor-train deep neural network (TT-DNN) to build an end-to-end deep learning pipeline, namely LR-TT-DNN. Secondly, a hybrid model combining LR-TT-DNN with a convolutional neural network (CNN), which is denoted as CNN+(LR-TT-DNN), is set up to boost the performance. Instead of randomly assigning large TT-ranks for TT-DNN, we leverage Riemannian gradient descent to determine a TT-DNN associated with small TT-ranks. Furthermore, CNN+(LR-TT-DNN) consists of convolutional layers at the bottom for feature extraction and several TT layers at the top to solve regression and classification problems. We separately assess the LR-TT-DNN and CNN+(LR-TT-DNN) models on speech enhancement and spoken command recognition tasks. Our empirical evidence demonstrates that the LR-TT-DNN and CNN+(LR-TT-DNN) models with fewer model parameters can outperform the TT-DNN and CNN+(TT-DNN) counterparts.
Abstract:The rapid development of quantum computing has demonstrated many unique characteristics of quantum advantages, such as richer feature representation and more secured protection on model parameters. This work proposes a vertical federated learning architecture based on variational quantum circuits to demonstrate the competitive performance of a quantum-enhanced pre-trained BERT model for text classification. In particular, our proposed hybrid classical-quantum model consists of a novel random quantum temporal convolution (QTC) learning framework replacing some layers in the BERT-based decoder. Our experiments on intent classification show that our proposed BERT-QTC model attains competitive experimental results in the Snips and ATIS spoken language datasets. Particularly, the BERT-QTC boosts the performance of the existing quantum circuit-based language model in two text classification datasets by 1.57% and 1.52% relative improvements. Furthermore, BERT-QTC can be feasibly deployed on both existing commercial-accessible quantum computation hardware and CPU-based interface for ensuring data isolation.
Abstract:This work aims to design a low complexity spoken command recognition (SCR) system by considering different trade-offs between the number of model parameters and classification accuracy. More specifically, we exploit a deep hybrid architecture of a tensor-train (TT) network to build an end-to-end SRC pipeline. Our command recognition system, namely CNN+(TT-DNN), is composed of convolutional layers at the bottom for spectral feature extraction and TT layers at the top for command classification. Compared with a traditional end-to-end CNN baseline for SCR, our proposed CNN+(TT-DNN) model replaces fully connected (FC) layers with TT ones and it can substantially reduce the number of model parameters while maintaining the baseline performance of the CNN model. We initialize the CNN+(TT-DNN) model in a randomized manner or based on a well-trained CNN+DNN, and assess the CNN+(TT-DNN) models on the Google Speech Command Dataset. Our experimental results show that the proposed CNN+(TT-DNN) model attains a competitive accuracy of 96.31% with 4 times fewer model parameters than the CNN model. Furthermore, the CNN+(TT-DNN) model can obtain a 97.2% accuracy when the number of parameters is increased.
Abstract:This work investigates an extension of transfer learning applied in machine learning algorithms to the emerging hybrid end-to-end quantum neural network (QNN) for spoken command recognition (SCR). Our QNN-based SCR system is composed of classical and quantum components: (1) the classical part mainly relies on a 1D convolutional neural network (CNN) to extract speech features; (2) the quantum part is built upon the variational quantum circuit with a few learnable parameters. Since it is inefficient to train the hybrid end-to-end QNN from scratch on a noisy intermediate-scale quantum (NISQ) device, we put forth a hybrid transfer learning algorithm that allows a pre-trained classical network to be transferred to the classical part of the hybrid QNN model. The pre-trained classical network is further modified and augmented through jointly fine-tuning with a variational quantum circuit (VQC). The hybrid transfer learning methodology is particularly attractive for the task of QNN-based SCR because low-dimensional classical features are expected to be encoded into quantum states. We assess the hybrid transfer learning algorithm applied to the hybrid classical-quantum QNN for SCR on the Google speech command dataset, and our classical simulation results suggest that the hybrid transfer learning can boost our baseline performance on the SCR task.