Abstract:Recent advancements in quantum computing (QC) and machine learning (ML) have garnered significant attention, leading to substantial efforts toward the development of quantum machine learning (QML) algorithms to address a variety of complex challenges. The design of high-performance QML models, however, requires expert-level knowledge, posing a significant barrier to the widespread adoption of QML. Key challenges include the design of data encoding mechanisms and parameterized quantum circuits, both of which critically impact the generalization capabilities of QML models. We propose a novel method that encodes quantum circuit architecture information to enable the evolution of quantum circuit designs. In this approach, the fitness function is based on the effective dimension, allowing for the optimization of quantum circuits towards higher model capacity. Through numerical simulations, we demonstrate that the proposed method is capable of discovering variational quantum circuit architectures that offer improved learning capabilities, thereby enhancing the overall performance of QML models for complex tasks.
Abstract:In this paper, we introduce Quantum-Train-Based Distributed Multi-Agent Reinforcement Learning (Dist-QTRL), a novel approach to addressing the scalability challenges of traditional Reinforcement Learning (RL) by integrating quantum computing principles. Quantum-Train Reinforcement Learning (QTRL) leverages parameterized quantum circuits to efficiently generate neural network parameters, achieving a \(poly(\log(N))\) reduction in the dimensionality of trainable parameters while harnessing quantum entanglement for superior data representation. The framework is designed for distributed multi-agent environments, where multiple agents, modeled as Quantum Processing Units (QPUs), operate in parallel, enabling faster convergence and enhanced scalability. Additionally, the Dist-QTRL framework can be extended to high-performance computing (HPC) environments by utilizing distributed quantum training for parameter reduction in classical neural networks, followed by inference using classical CPUs or GPUs. This hybrid quantum-HPC approach allows for further optimization in real-world applications. In this paper, we provide a mathematical formulation of the Dist-QTRL framework and explore its convergence properties, supported by empirical results demonstrating performance improvements over centric QTRL models. The results highlight the potential of quantum-enhanced RL in tackling complex, high-dimensional tasks, particularly in distributed computing settings, where our framework achieves significant speedups through parallelization without compromising model accuracy. This work paves the way for scalable, quantum-enhanced RL systems in practical applications, leveraging both quantum and classical computational resources.
Abstract:Quantum machine learning (QML) is a rapidly growing field that combines quantum computing principles with traditional machine learning. It seeks to revolutionize machine learning by harnessing the unique capabilities of quantum mechanics and employs machine learning techniques to advance quantum computing research. This paper introduces quantum computing for the machine learning paradigm, where variational quantum circuits (VQC) are used to develop QML architectures on noisy intermediate-scale quantum (NISQ) devices. We discuss machine learning for the quantum computing paradigm, showcasing our recent theoretical and empirical findings. In particular, we delve into future directions for studying QML, exploring the potential industrial impacts of QML research.
Abstract:Quantum Machine Learning (QML) offers tremendous potential but is currently limited by the availability of qubits. We introduce an innovative approach that utilizes pre-trained neural networks to enhance Variational Quantum Circuits (VQC). This technique effectively separates approximation error from qubit count and removes the need for restrictive conditions, making QML more viable for real-world applications. Our method significantly improves parameter optimization for VQC while delivering notable gains in representation and generalization capabilities, as evidenced by rigorous theoretical analysis and extensive empirical testing on quantum dot classification tasks. Moreover, our results extend to applications such as human genome analysis, demonstrating the broad applicability of our approach. By addressing the constraints of current quantum hardware, our work paves the way for a new era of advanced QML applications, unlocking the full potential of quantum computing in fields such as machine learning, materials science, medicine, mimetics, and various interdisciplinary areas.
Abstract:The rise of deepfake technologies has posed significant challenges to privacy, security, and information integrity, particularly in audio and multimedia content. This paper introduces a Quantum-Trained Convolutional Neural Network (QT-CNN) framework designed to enhance the detection of deepfake audio, leveraging the computational power of quantum machine learning (QML). The QT-CNN employs a hybrid quantum-classical approach, integrating Quantum Neural Networks (QNNs) with classical neural architectures to optimize training efficiency while reducing the number of trainable parameters. Our method incorporates a novel quantum-to-classical parameter mapping that effectively utilizes quantum states to enhance the expressive power of the model, achieving up to 70% parameter reduction compared to classical models without compromising accuracy. Data pre-processing involved extracting essential audio features, label encoding, feature scaling, and constructing sequential datasets for robust model evaluation. Experimental results demonstrate that the QT-CNN achieves comparable performance to traditional CNNs, maintaining high accuracy during training and testing phases across varying configurations of QNN blocks. The QT framework's ability to reduce computational overhead while maintaining performance underscores its potential for real-world applications in deepfake detection and other resource-constrained scenarios. This work highlights the practical benefits of integrating quantum computing into artificial intelligence, offering a scalable and efficient approach to advancing deepfake detection technologies.
Abstract:Recent advancements in quantum computing (QC) and machine learning (ML) have sparked considerable interest in the integration of these two cutting-edge fields. Among the various ML techniques, reinforcement learning (RL) stands out for its ability to address complex sequential decision-making problems. RL has already demonstrated substantial success in the classical ML community. Now, the emerging field of Quantum Reinforcement Learning (QRL) seeks to enhance RL algorithms by incorporating principles from quantum computing. This paper offers an introduction to this exciting area for the broader AI and ML community.
Abstract:Quantum machine learning (QML) has recently made significant advancements in various topics. Despite the successes, the safety and interpretability of QML applications have not been thoroughly investigated. This work proposes using Variational Quantum Circuits (VQCs) for activation mapping to enhance model transparency, introducing the Quantum Gradient Class Activation Map (QGrad-CAM). This hybrid quantum-classical computing framework leverages both quantum and classical strengths and gives access to the derivation of an explicit formula of feature map importance. Experimental results demonstrate significant, fine-grained, class-discriminative visual explanations generated across both image and speech datasets.
Abstract:The rapid advancement of quantum computing (QC) and machine learning (ML) has given rise to the burgeoning field of quantum machine learning (QML), aiming to capitalize on the strengths of quantum computing to propel ML forward. Despite its promise, crafting effective QML models necessitates profound expertise to strike a delicate balance between model intricacy and feasibility on Noisy Intermediate-Scale Quantum (NISQ) devices. While complex models offer robust representation capabilities, their extensive circuit depth may impede seamless execution on extant noisy quantum platforms. In this paper, we address this quandary of QML model design by employing deep reinforcement learning to explore proficient QML model architectures tailored for designated supervised learning tasks. Specifically, our methodology involves training an RL agent to devise policies that facilitate the discovery of QML models without predetermined ansatz. Furthermore, we integrate an adaptive mechanism to dynamically adjust the learning objectives, fostering continuous improvement in the agent's learning process. Through extensive numerical simulations, we illustrate the efficacy of our approach within the realm of classification tasks. Our proposed method successfully identifies VQC architectures capable of achieving high classification accuracy while minimizing gate depth. This pioneering approach not only advances the study of AI-driven quantum circuit design but also holds significant promise for enhancing performance in the NISQ era.
Abstract:The emergence of quantum reinforcement learning (QRL) is propelled by advancements in quantum computing (QC) and machine learning (ML), particularly through quantum neural networks (QNN) built on variational quantum circuits (VQC). These advancements have proven successful in addressing sequential decision-making tasks. However, constructing effective QRL models demands significant expertise due to challenges in designing quantum circuit architectures, including data encoding and parameterized circuits, which profoundly influence model performance. In this paper, we propose addressing this challenge with differentiable quantum architecture search (DiffQAS), enabling trainable circuit parameters and structure weights using gradient-based optimization. Furthermore, we enhance training efficiency through asynchronous reinforcement learning (RL) methods facilitating parallel training. Through numerical simulations, we demonstrate that our proposed DiffQAS-QRL approach achieves performance comparable to manually-crafted circuit architectures across considered environments, showcasing stability across diverse scenarios. This methodology offers a pathway for designing QRL models without extensive quantum knowledge, ensuring robust performance and fostering broader application of QRL.
Abstract:Parameterized Quantum Circuits (PQCs) have been acknowledged as a leading strategy to utilize near-term quantum advantages in multiple problems, including machine learning and combinatorial optimization. When applied to specific tasks, the parameters in the quantum circuits are trained to minimize the target function. Although there have been comprehensive studies to improve the performance of the PQCs on practical tasks, the errors caused by the quantum noise downgrade the performance when running on real quantum computers. In particular, when the quantum state is transformed through multiple quantum circuit layers, the effect of the quantum noise happens cumulatively and becomes closer to the maximally mixed state or complete noise. This paper studies the relationship between the quantum noise and the diffusion model. Then, we propose a novel diffusion-inspired learning approach to mitigate the quantum noise in the PQCs and reduce the error for specific tasks. Through our experiments, we illustrate the efficiency of the learning strategy and achieve state-of-the-art performance on classification tasks in the quantum noise scenarios.