Henry
Abstract:In this paper, we introduce Quantum-Train-Based Distributed Multi-Agent Reinforcement Learning (Dist-QTRL), a novel approach to addressing the scalability challenges of traditional Reinforcement Learning (RL) by integrating quantum computing principles. Quantum-Train Reinforcement Learning (QTRL) leverages parameterized quantum circuits to efficiently generate neural network parameters, achieving a \(poly(\log(N))\) reduction in the dimensionality of trainable parameters while harnessing quantum entanglement for superior data representation. The framework is designed for distributed multi-agent environments, where multiple agents, modeled as Quantum Processing Units (QPUs), operate in parallel, enabling faster convergence and enhanced scalability. Additionally, the Dist-QTRL framework can be extended to high-performance computing (HPC) environments by utilizing distributed quantum training for parameter reduction in classical neural networks, followed by inference using classical CPUs or GPUs. This hybrid quantum-HPC approach allows for further optimization in real-world applications. In this paper, we provide a mathematical formulation of the Dist-QTRL framework and explore its convergence properties, supported by empirical results demonstrating performance improvements over centric QTRL models. The results highlight the potential of quantum-enhanced RL in tackling complex, high-dimensional tasks, particularly in distributed computing settings, where our framework achieves significant speedups through parallelization without compromising model accuracy. This work paves the way for scalable, quantum-enhanced RL systems in practical applications, leveraging both quantum and classical computational resources.
Abstract:The integration of quantum computing into classical machine learning architectures has emerged as a promising approach to enhance model efficiency and computational capacity. In this work, we introduce the Quantum Kernel-Based Long Short-Term Memory (QK-LSTM) network, which utilizes quantum kernel functions within the classical LSTM framework to capture complex, non-linear patterns in sequential data. By embedding input data into a high-dimensional quantum feature space, the QK-LSTM model reduces the reliance on large parameter sets, achieving effective compression while maintaining accuracy in sequence modeling tasks. This quantum-enhanced architecture demonstrates efficient convergence, robust loss minimization, and model compactness, making it suitable for deployment in edge computing environments and resource-limited quantum devices (especially in the NISQ era). Benchmark comparisons reveal that QK-LSTM achieves performance on par with classical LSTM models, yet with fewer parameters, underscoring its potential to advance quantum machine learning applications in natural language processing and other domains requiring efficient temporal data processing.
Abstract:The rise of deepfake technologies has posed significant challenges to privacy, security, and information integrity, particularly in audio and multimedia content. This paper introduces a Quantum-Trained Convolutional Neural Network (QT-CNN) framework designed to enhance the detection of deepfake audio, leveraging the computational power of quantum machine learning (QML). The QT-CNN employs a hybrid quantum-classical approach, integrating Quantum Neural Networks (QNNs) with classical neural architectures to optimize training efficiency while reducing the number of trainable parameters. Our method incorporates a novel quantum-to-classical parameter mapping that effectively utilizes quantum states to enhance the expressive power of the model, achieving up to 70% parameter reduction compared to classical models without compromising accuracy. Data pre-processing involved extracting essential audio features, label encoding, feature scaling, and constructing sequential datasets for robust model evaluation. Experimental results demonstrate that the QT-CNN achieves comparable performance to traditional CNNs, maintaining high accuracy during training and testing phases across varying configurations of QNN blocks. The QT framework's ability to reduce computational overhead while maintaining performance underscores its potential for real-world applications in deepfake detection and other resource-constrained scenarios. This work highlights the practical benefits of integrating quantum computing into artificial intelligence, offering a scalable and efficient approach to advancing deepfake detection technologies.
Abstract:This paper introduces CompressedMediQ, a novel hybrid quantum-classical machine learning pipeline specifically developed to address the computational challenges associated with high-dimensional multi-class neuroimaging data analysis. Standard neuroimaging datasets, such as 4D MRI data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and Neuroimaging in Frontotemporal Dementia (NIFD), present significant hurdles due to their vast size and complexity. CompressedMediQ integrates classical high-performance computing (HPC) nodes for advanced MRI pre-processing and Convolutional Neural Network (CNN)-PCA-based feature extraction and reduction, addressing the limited-qubit availability for quantum data encoding in the NISQ (Noisy Intermediate-Scale Quantum) era. This is followed by Quantum Support Vector Machine (QSVM) classification. By utilizing quantum kernel methods, the pipeline optimizes feature mapping and classification, enhancing data separability and outperforming traditional neuroimaging analysis techniques. Experimental results highlight the pipeline's superior accuracy in dementia staging, validating the practical use of quantum machine learning in clinical diagnostics. Despite the limitations of NISQ devices, this proof-of-concept demonstrates the transformative potential of quantum-enhanced learning, paving the way for scalable and precise diagnostic tools in healthcare and signal processing.
Abstract:This paper presents a Consensus-based Distributed Quantum Kernel Learning (CDQKL) framework aimed at improving speech recognition through distributed quantum computing.CDQKL addresses the challenges of scalability and data privacy in centralized quantum kernel learning. It does this by distributing computational tasks across quantum terminals, which are connected through classical channels. This approach enables the exchange of model parameters without sharing local training data, thereby maintaining data privacy and enhancing computational efficiency. Experimental evaluations on benchmark speech emotion recognition datasets demonstrate that CDQKL achieves competitive classification accuracy and scalability compared to centralized and local quantum kernel learning models. The distributed nature of CDQKL offers advantages in privacy preservation and computational efficiency, making it suitable for data-sensitive fields such as telecommunications, automotive, and finance. The findings suggest that CDQKL can effectively leverage distributed quantum computing for large-scale machine-learning tasks.
Abstract:The escalating impacts of climate change and the increasing demand for sustainable development and natural resource management necessitate innovative technological solutions. Quantum computing (QC) has emerged as a promising tool with the potential to revolutionize these critical areas. This review explores the application of quantum machine learning and optimization techniques for climate change prediction and enhancing sustainable development. Traditional computational methods often fall short in handling the scale and complexity of climate models and natural resource management. Quantum advancements, however, offer significant improvements in computational efficiency and problem-solving capabilities. By synthesizing the latest research and developments, this paper highlights how QC and quantum machine learning can optimize multi-infrastructure systems towards climate neutrality. The paper also evaluates the performance of current quantum algorithms and hardware in practical applications and presents realistic cases, i.e., waste-to-energy in anaerobic digestion, disaster prevention in flooding prediction, and new material development for carbon capture. The integration of these quantum technologies promises to drive significant advancements in achieving climate resilience and sustainable development.
Abstract:Achieving high-performance computation on quantum systems presents a formidable challenge that necessitates bridging the capabilities between quantum hardware and classical computing resources. This study introduces an innovative distribution-aware Quantum-Classical-Quantum (QCQ) architecture, which integrates cutting-edge quantum software framework works with high-performance classical computing resources to address challenges in quantum simulation for materials and condensed matter physics. At the heart of this architecture is the seamless integration of VQE algorithms running on QPUs for efficient quantum state preparation, Tensor Network states, and QCNNs for classifying quantum states on classical hardware. For benchmarking quantum simulators, the QCQ architecture utilizes the cuQuantum SDK to leverage multi-GPU acceleration, integrated with PennyLane's Lightning plugin, demonstrating up to tenfold increases in computational speed for complex phase transition classification tasks compared to traditional CPU-based methods. This significant acceleration enables models such as the transverse field Ising and XXZ systems to accurately predict phase transitions with a 99.5% accuracy. The architecture's ability to distribute computation between QPUs and classical resources addresses critical bottlenecks in Quantum-HPC, paving the way for scalable quantum simulation. The QCQ framework embodies a synergistic combination of quantum algorithms, machine learning, and Quantum-HPC capabilities, enhancing its potential to provide transformative insights into the behavior of quantum systems across different scales. As quantum hardware continues to improve, this hybrid distribution-aware framework will play a crucial role in realizing the full potential of quantum computing by seamlessly integrating distributed quantum resources with the state-of-the-art classical computing infrastructure.
Abstract:In this study, we introduce an innovative Quantum-enhanced Support Vector Machine (QSVM) approach for stellar classification, leveraging the power of quantum computing and GPU acceleration. Our QSVM algorithm significantly surpasses traditional methods such as K-Nearest Neighbors (KNN) and Logistic Regression (LR), particularly in handling complex binary and multi-class scenarios within the Harvard stellar classification system. The integration of quantum principles notably enhances classification accuracy, while GPU acceleration using the cuQuantum SDK ensures computational efficiency and scalability for large datasets in quantum simulators. This synergy not only accelerates the processing process but also improves the accuracy of classifying diverse stellar types, setting a new benchmark in astronomical data analysis. Our findings underscore the transformative potential of quantum machine learning in astronomical research, marking a significant leap forward in both precision and processing speed for stellar classification. This advancement has broader implications for astrophysical and related scientific fields