Abstract:A Large Language Model (LLM) powered GUI agent is a specialized autonomous system that performs tasks on the user's behalf according to high-level instructions. It does so by perceiving and interpreting the graphical user interfaces (GUIs) of relevant apps, often visually, inferring necessary sequences of actions, and then interacting with GUIs by executing the actions such as clicking, typing, and tapping. To complete real-world tasks, such as filling forms or booking services, GUI agents often need to process and act on sensitive user data. However, this autonomy introduces new privacy and security risks. Adversaries can inject malicious content into the GUIs that alters agent behaviors or induces unintended disclosures of private information. These attacks often exploit the discrepancy between visual saliency for agents and human users, or the agent's limited ability to detect violations of contextual integrity in task automation. In this paper, we characterized six types of such attacks, and conducted an experimental study to test these attacks with six state-of-the-art GUI agents, 234 adversarial webpages, and 39 human participants. Our findings suggest that GUI agents are highly vulnerable, particularly to contextually embedded threats. Moreover, human users are also susceptible to many of these attacks, indicating that simple human oversight may not reliably prevent failures. This misalignment highlights the need for privacy-aware agent design. We propose practical defense strategies to inform the development of safer and more reliable GUI agents.
Abstract:Language model (LM) agents that act on users' behalf for personal tasks can boost productivity, but are also susceptible to unintended privacy leakage risks. We present the first study on people's capacity to oversee the privacy implications of the LM agents. By conducting a task-based survey (N=300), we investigate how people react to and assess the response generated by LM agents for asynchronous interpersonal communication tasks, compared with a response they wrote. We found that people may favor the agent response with more privacy leakage over the response they drafted or consider both good, leading to an increased harmful disclosure from 15.7% to 55.0%. We further uncovered distinct patterns of privacy behaviors, attitudes, and preferences, and the nuanced interactions between privacy considerations and other factors. Our findings shed light on designing agentic systems that enable privacy-preserving interactions and achieve bidirectional alignment on privacy preferences to help users calibrate trust.
Abstract:The increasing use of Artificial Intelligence (AI) by students in learning presents new challenges for assessing their learning outcomes in project-based learning (PBL). This paper introduces a co-design study to explore the potential of students' AI usage data as a novel material for PBL assessment. We conducted workshops with 18 college students, encouraging them to speculate an alternative world where they could freely employ AI in PBL while needing to report this process to assess their skills and contributions. Our workshops yielded various scenarios of students' use of AI in PBL and ways of analyzing these uses grounded by students' vision of education goal transformation. We also found students with different attitudes toward AI exhibited distinct preferences in how to analyze and understand the use of AI. Based on these findings, we discuss future research opportunities on student-AI interactions and understanding AI-enhanced learning.