Abstract:Binary Neural Networks (BNNs) have garnered significant attention due to their immense potential for deployment on edge devices. However, the non-differentiability of the quantization function poses a challenge for the optimization of BNNs, as its derivative cannot be backpropagated. To address this issue, hypernetwork based methods, which utilize neural networks to learn the gradients of non-differentiable quantization functions, have emerged as a promising approach due to their adaptive learning capabilities to reduce estimation errors. However, existing hypernetwork based methods typically rely solely on current gradient information, neglecting the influence of historical gradients. This oversight can lead to accumulated gradient errors when calculating gradient momentum during optimization. To incorporate historical gradient information, we design a Historical Gradient Storage (HGS) module, which models the historical gradient sequence to generate the first-order momentum required for optimization. To further enhance gradient generation in hypernetworks, we propose a Fast and Slow Gradient Generation (FSG) method. Additionally, to produce more precise gradients, we introduce Layer Recognition Embeddings (LRE) into the hypernetwork, facilitating the generation of layer-specific fine gradients. Extensive comparative experiments on the CIFAR-10 and CIFAR-100 datasets demonstrate that our method achieves faster convergence and lower loss values, outperforming existing baselines.Code is available at http://github.com/two-tiger/FSG .
Abstract:As an effective approach to equip models with multi-task capabilities without additional training, model merging has garnered significant attention. However, existing methods face challenges of redundant parameter conflicts and the excessive storage burden of parameters. In this work, through controlled experiments, we reveal that for task vectors, only those parameters with magnitudes above a certain threshold contribute positively to the task, exhibiting a pulse-like characteristic. We then attempt leveraging this characteristic to binarize the task vectors and reduce storage overhead. Further controlled experiments show that the binarized task vectors incur almost no decrease in fine-tuning and merging performance, and even exhibit stronger performance improvements as the proportion of redundant parameters increases. Based on these insights, we propose Task Switch (T-Switch), which decomposes task vectors into three components: 1) an activation switch instantiated by a binarized mask vector, 2) a polarity switch instantiated by a binarized sign vector, and 3) a scaling knob instantiated by a scalar coefficient. By storing task vectors in a binarized form, T-Switch alleviates parameter conflicts while ensuring efficient task parameter storage. Furthermore, to enable automated switch combination in T-Switch, we further introduce Auto-Switch, which enables training-free switch combination via retrieval from a small query set. Experiments indicate that our methods achieve significant performance improvements over existing baselines, requiring only 1-3% of the storage space of full-precision parameters.
Abstract:Incremental graph learning has gained significant attention for its ability to address the catastrophic forgetting problem in graph representation learning. However, traditional methods often rely on a large number of labels for node classification, which is impractical in real-world applications. This makes few-shot incremental learning on graphs a pressing need. Current methods typically require extensive training samples from meta-learning to build memory and perform intensive fine-tuning of GNN parameters, leading to high memory consumption and potential loss of previously learned knowledge. To tackle these challenges, we introduce Mecoin, an efficient method for building and maintaining memory. Mecoin employs Structured Memory Units to cache prototypes of learned categories, as well as Memory Construction Modules to update these prototypes for new categories through interactions between the nodes and the cached prototypes. Additionally, we have designed a Memory Representation Adaptation Module to store probabilities associated with each class prototype, reducing the need for parameter fine-tuning and lowering the forgetting rate. When a sample matches its corresponding class prototype, the relevant probabilities are retrieved from the MRaM. Knowledge is then distilled back into the GNN through a Graph Knowledge Distillation Module, preserving the model's memory. We analyze the effectiveness of Mecoin in terms of generalization error and explore the impact of different distillation strategies on model performance through experiments and VC-dimension analysis. Compared to other related works, Mecoin shows superior performance in accuracy and forgetting rate. Our code is publicly available on the https://github.com/Arvin0313/Mecoin-GFSCIL.git .
Abstract:The ability of humans to rapidly learn new knowledge while retaining old memories poses a significant challenge for current deep learning models. To handle this challenge, we draw inspiration from human memory and learning mechanisms and propose the Self-Reflective Complementary Incremental System (SR-CIS). Comprising the deconstructed Complementary Inference Module (CIM) and Complementary Memory Module (CMM), SR-CIS features a small model for fast inference and a large model for slow deliberation in CIM, enabled by the Confidence-Aware Online Anomaly Detection (CA-OAD) mechanism for efficient collaboration. CMM consists of task-specific Short-Term Memory (STM) region and a universal Long-Term Memory (LTM) region. By setting task-specific Low-Rank Adaptive (LoRA) and corresponding prototype weights and biases, it instantiates external storage for parameter and representation memory, thus deconstructing the memory module from the inference module. By storing textual descriptions of images during training and combining them with the Scenario Replay Module (SRM) post-training for memory combination, along with periodic short-to-long-term memory restructuring, SR-CIS achieves stable incremental memory with limited storage requirements. Balancing model plasticity and memory stability under constraints of limited storage and low data resources, SR-CIS surpasses existing competitive baselines on multiple standard and few-shot incremental learning benchmarks.
Abstract:The transferability of adversarial perturbations provides an effective shortcut for black-box attacks. Targeted perturbations have greater practicality but are more difficult to transfer between models. In this paper, we experimentally and theoretically demonstrated that neural networks trained on the same dataset have more consistent performance in High-Sample-Density-Regions (HSDR) of each class instead of low sample density regions. Therefore, in the target setting, adding perturbations towards HSDR of the target class is more effective in improving transferability. However, density estimation is challenging in high-dimensional scenarios. Further theoretical and experimental verification demonstrates that easy samples with low loss are more likely to be located in HSDR. Perturbations towards such easy samples in the target class can avoid density estimation for HSDR location. Based on the above facts, we verified that adding perturbations to easy samples in the target class improves targeted adversarial transferability of existing attack methods. A generative targeted attack strategy named Easy Sample Matching Attack (ESMA) is proposed, which has a higher success rate for targeted attacks and outperforms the SOTA generative method. Moreover, ESMA requires only 5% of the storage space and much less computation time comparing to the current SOTA, as ESMA attacks all classes with only one model instead of seperate models for each class. Our code is available at https://github.com/gjq100/ESMA.
Abstract:Direct Preference Optimization (DPO) improves the alignment of large language models (LLMs) with human values by training directly on human preference datasets, eliminating the need for reward models. However, due to the presence of cross-domain human preferences, direct continual training can lead to catastrophic forgetting, limiting DPO's performance and efficiency. Inspired by intraspecific competition driving species evolution, we propose a Online Fast-Slow chasing DPO (OFS-DPO) for preference alignment, simulating competition through fast and slow chasing among models to facilitate rapid adaptation. Specifically, we first derive the regret upper bound for online learning, validating our motivation with a min-max optimization pattern. Based on this, we introduce two identical modules using Low-rank Adaptive (LoRA) with different optimization speeds to simulate intraspecific competition, and propose a new regularization term to guide their learning. To further mitigate catastrophic forgetting in cross-domain scenarios, we extend the OFS-DPO with LoRA modules combination strategy, resulting in the Cross domain Online Fast-Slow chasing DPO (COFS-DPO). This method leverages linear combinations of fast modules parameters from different task domains, fully utilizing historical information to achive continual value alignment. Experimental results show that OFS-DPO outperforms DPO in in-domain alignment, while COFS-DPO excels in cross-domain continual learning scenarios.
Abstract:From the perspective of information bottleneck (IB) theory, we propose a novel framework for performing black-box transferable adversarial attacks named IBTA, which leverages advancements in invariant features. Intuitively, diminishing the reliance of adversarial perturbations on the original data, under equivalent attack performance constraints, encourages a greater reliance on invariant features that contributes most to classification, thereby enhancing the transferability of adversarial attacks. Building on this motivation, we redefine the optimization of transferable attacks using a novel theoretical framework that centers around IB. Specifically, to overcome the challenge of unoptimizable mutual information, we propose a simple and efficient mutual information lower bound (MILB) for approximating computation. Moreover, to quantitatively evaluate mutual information, we utilize the Mutual Information Neural Estimator (MINE) to perform a thorough analysis. Our experiments on the ImageNet dataset well demonstrate the efficiency and scalability of IBTA and derived MILB. Our code is available at https://github.com/Biqing-Qi/Enhancing-Adversarial-Transferability-via-Information-Bottleneck-Constraints.
Abstract:Despite the promising performance of state space models (SSMs) in long sequence modeling, limitations still exist. Advanced SSMs like S5 and S6 (Mamba) in addressing non-uniform sampling, their recursive structures impede efficient SSM computation via convolution. To overcome compatibility limitations in parallel convolutional computation, this paper proposes a novel non-recursive non-uniform sample processing strategy. Theoretical analysis of SSMs through the lens of Event-Triggered Control (ETC) theory reveals the Non-Stable State (NSS) problem, where deviations from sampling point requirements lead to error transmission and accumulation, causing the divergence of the SSM's hidden state. Our analysis further reveals that adjustments of input sequences with early memories can mitigate the NSS problem, achieving Sampling Step Adaptation (SSA). Building on this insight, we introduce a simple yet effective plug-and-play mechanism, State Memory Replay (SMR), which utilizes learnable memories to adjust the current state with multi-step information for generalization at sampling points different from those in the training data. This enables SSMs to stably model varying sampling points. Experiments on long-range modeling tasks in autoregressive language modeling and Long Range Arena demonstrate the general effectiveness of the SMR mechanism for a series of SSM models.
Abstract:Few-Shot Class-Incremental Learning (FSCIL) has gained considerable attention in recent years for its pivotal role in addressing continuously arriving classes. However, it encounters additional challenges. The scarcity of samples in new sessions intensifies overfitting, causing incompatibility between the output features of new and old classes, thereby escalating catastrophic forgetting. A prevalent strategy involves mitigating catastrophic forgetting through the Explicit Memory (EM), which comprise of class prototypes. However, current EM-based methods retrieves memory globally by performing Vector-to-Vector (V2V) interaction between features corresponding to the input and prototypes stored in EM, neglecting the geometric structure of local features. This hinders the accurate modeling of their positional relationships. To incorporate information of local geometric structure, we extend the V2V interaction to Graph-to-Graph (G2G) interaction. For enhancing local structures for better G2G alignment and the prevention of local feature collapse, we propose the Local Graph Preservation (LGP) mechanism. Additionally, to address sample scarcity in classes from new sessions, the Contrast-Augmented G2G (CAG2G) is introduced to promote the aggregation of same class features thus helps few-shot learning. Extensive comparisons on CIFAR100, CUB200, and the challenging ImageNet-R dataset demonstrate the superiority of our method over existing methods.
Abstract:Advanced life forms, sustained by the synergistic interaction of neural cognitive mechanisms, continually acquire and transfer knowledge throughout their lifespan. In contrast, contemporary machine learning paradigms exhibit limitations in emulating the facets of continual learning (CL). Nonetheless, the emergence of large language models (LLMs) presents promising avenues for realizing CL via interactions with these models. Drawing on Complementary Learning System theory, this paper presents a novel Interactive Continual Learning (ICL) framework, enabled by collaborative interactions among models of various sizes. Specifically, we assign the ViT model as System1 and multimodal LLM as System2. To enable the memory module to deduce tasks from class information and enhance Set2Set retrieval, we propose the Class-Knowledge-Task Multi-Head Attention (CKT-MHA). Additionally, to improve memory retrieval in System1 through enhanced geometric representation, we introduce the CL-vMF mechanism, based on the von Mises-Fisher (vMF) distribution. Meanwhile, we introduce the von Mises-Fisher Outlier Detection and Interaction (vMF-ODI) strategy to identify hard examples, thus enhancing collaboration between System1 and System2 for complex reasoning realization. Comprehensive evaluation of our proposed ICL demonstrates significant resistance to forgetting and superior performance relative to existing methods.