Abstract:The transferability of adversarial perturbations provides an effective shortcut for black-box attacks. Targeted perturbations have greater practicality but are more difficult to transfer between models. In this paper, we experimentally and theoretically demonstrated that neural networks trained on the same dataset have more consistent performance in High-Sample-Density-Regions (HSDR) of each class instead of low sample density regions. Therefore, in the target setting, adding perturbations towards HSDR of the target class is more effective in improving transferability. However, density estimation is challenging in high-dimensional scenarios. Further theoretical and experimental verification demonstrates that easy samples with low loss are more likely to be located in HSDR. Perturbations towards such easy samples in the target class can avoid density estimation for HSDR location. Based on the above facts, we verified that adding perturbations to easy samples in the target class improves targeted adversarial transferability of existing attack methods. A generative targeted attack strategy named Easy Sample Matching Attack (ESMA) is proposed, which has a higher success rate for targeted attacks and outperforms the SOTA generative method. Moreover, ESMA requires only 5% of the storage space and much less computation time comparing to the current SOTA, as ESMA attacks all classes with only one model instead of seperate models for each class. Our code is available at https://github.com/gjq100/ESMA.
Abstract:Variational level set method has become a powerful tool in image segmentation due to its ability to handle complex topological changes and maintain continuity and smoothness in the process of evolution. However its evolution process can be unstable, which results in over flatted or over sharpened contours and segmentation failure. To improve the accuracy and stability of evolution, we propose a high-order level set variational segmentation method integrated with molecular beam epitaxy (MBE) equation regularization. This method uses the crystal growth in the MBE process to limit the evolution of the level set function, and thus can avoid the re-initialization in the evolution process and regulate the smoothness of the segmented curve. It also works for noisy images with intensity inhomogeneity, which is a challenge in image segmentation. To solve the variational model, we derive the gradient flow and design scalar auxiliary variable (SAV) scheme coupled with fast Fourier transform (FFT), which can significantly improve the computational efficiency compared with the traditional semi-implicit and semi-explicit scheme. Numerical experiments show that the proposed method can generate smooth segmentation curves, retain fine segmentation targets and obtain robust segmentation results of small objects. Compared to existing level set methods, this model is state-of-the-art in both accuracy and efficiency.
Abstract:Hyperspectral images (HSI) captured from earth observing satellites and aircraft is becoming increasingly important for applications in agriculture, environmental monitoring, mining, etc. Due to the limited available hyperspectral datasets, the pixel-wise random sampling is the most commonly used training-test dataset partition approach, which has significant overlap between samples in training and test datasets. Furthermore, our experimental observations indicates that regions with larger overlap often exhibit higher classification accuracy. Consequently, the pixel-wise random sampling approach poses a risk of data leakage. Thus, we propose a block-wise sampling method to minimize the potential for data leakage. Our experimental findings also confirm the presence of data leakage in models such as 2DCNN. Further, We propose a spectral-spatial axial aggregation transformer model, namely SaaFormer, to address the challenges associated with hyperspectral image classifier that considers HSI as long sequential three-dimensional images. The model comprises two primary components: axial aggregation attention and multi-level spectral-spatial extraction. The axial aggregation attention mechanism effectively exploits the continuity and correlation among spectral bands at each pixel position in hyperspectral images, while aggregating spatial dimension features. This enables SaaFormer to maintain high precision even under block-wise sampling. The multi-level spectral-spatial extraction structure is designed to capture the sensitivity of different material components to specific spectral bands, allowing the model to focus on a broader range of spectral details. The results on six publicly available datasets demonstrate that our model exhibits comparable performance when using random sampling, while significantly outperforming other methods when employing block-wise sampling partition.
Abstract:The inability to guarantee robustness is one of the major obstacles to the application of deep learning models in security-demanding domains. We identify that the most commonly used cross-entropy (CE) loss does not guarantee robust boundary for neural networks. CE loss sharpens the neural network at the decision boundary to achieve a lower loss, rather than pushing the boundary to a more robust position. A robust boundary should be kept in the middle of samples from different classes, thus maximizing the margins from the boundary to the samples. We think this is due to the fact that CE loss has no stationary point. In this paper, we propose a family of new losses, called stationary point (SP) loss, which has at least one stationary point on the correct classification side. We proved that robust boundary can be guaranteed by SP loss without losing much accuracy. With SP loss, larger perturbations are required to generate adversarial examples. We demonstrate that robustness is improved under a variety of adversarial attacks by applying SP loss. Moreover, robust boundary learned by SP loss also performs well on imbalanced datasets.