Abstract:Knowledge Tracing (KT) aims to determine whether students will respond correctly to the next question, which is a crucial task in intelligent tutoring systems (ITS). In educational KT scenarios, transductive ID-based methods often face severe data sparsity and cold start problems, where interactions between individual students and questions are sparse, and new questions and concepts consistently arrive in the database. In addition, existing KT models only implicitly consider the correlation between concepts and questions, lacking direct modeling of the more complex relationships in the heterogeneous graph of concepts and questions. In this paper, we propose a Structure-aware Inductive Knowledge Tracing model with large language model (dubbed SINKT), which, for the first time, introduces large language models (LLMs) and realizes inductive knowledge tracing. Firstly, SINKT utilizes LLMs to introduce structural relationships between concepts and constructs a heterogeneous graph for concepts and questions. Secondly, by encoding concepts and questions with LLMs, SINKT incorporates semantic information to aid prediction. Finally, SINKT predicts the student's response to the target question by interacting with the student's knowledge state and the question representation. Experiments on four real-world datasets demonstrate that SINKT achieves state-of-the-art performance among 12 existing transductive KT models. Additionally, we explore the performance of SINKT on the inductive KT task and provide insights into various modules.
Abstract:Utilizing large language models to generate codes has shown promising meaning in software development revolution. Despite the intelligence shown by the general large language models, their specificity in code generation can still be improved due to the syntactic gap and mismatched vocabulary existing among natural language and different programming languages. In addition, programming languages are inherently logical and complex, making them hard to be correctly generated. Existing methods rely on multiple prompts to the large language model to explore better solutions, which is expensive. In this paper, we propose Syntax Graph Retrieval Augmented Code Generation (CodeGRAG) to enhance the performance of LLMs in single-round code generation tasks. CodeGRAG extracts and summarizes the control flow and data flow of code blocks to fill the gap between programming languages and natural language. The extracted external structural knowledge models the inherent flows of code blocks, which can facilitate LLMs for better understanding of code syntax and serve as a bridge among different programming languages. CodeGRAG significantly improves the code generation ability of LLMs and can even offer performance gain for cross-lingual code generation, e.g., C++ for Python.
Abstract:With the emergence of Large Language Models (LLMs), there has been a significant improvement in the programming capabilities of models, attracting growing attention from researchers. We propose CodeApex, a bilingual benchmark dataset focusing on the programming comprehension and code generation abilities of LLMs. CodeApex comprises three types of multiple-choice questions: conceptual understanding, commonsense reasoning, and multi-hop reasoning, designed to evaluate LLMs on programming comprehension tasks. Additionally, CodeApex utilizes algorithmic questions and corresponding test cases to assess the code quality generated by LLMs. We evaluate 14 state-of-the-art LLMs, including both general-purpose and specialized models. GPT exhibits the best programming capabilities, achieving approximate accuracies of 50% and 56% on the two tasks, respectively. There is still significant room for improvement in programming tasks. We hope that CodeApex can serve as a reference for evaluating the coding capabilities of LLMs, further promoting their development and growth. Datasets are released at https://github.com/APEXLAB/CodeApex.git. CodeApex submission website is https://apex.sjtu.edu.cn/codeapex/.
Abstract:To provide click simulation or relevance estimation based on users' implicit interaction feedback, click models have been much studied during recent years. Most click models focus on user behaviors towards a single list. However, with the development of user interface (UI) design, the layout of displayed items on a result page tends to be multi-block (i.e., multi-list) style instead of a single list, which requires different assumptions to model user behaviors more accurately. There exist click models for multi-block pages in desktop contexts, but they cannot be directly applied to mobile scenarios due to different interaction manners, result types and especially multi-block presentation styles. In particular, multi-block mobile pages can normally be decomposed into interleavings of basic vertical blocks and horizontal blocks, thus resulting in typically F-shape forms. To mitigate gaps between desktop and mobile contexts for multi-block pages, we conduct a user eye-tracking study, and identify users' sequential browsing, block skip and comparison patterns on F-shape pages. These findings lead to the design of a novel F-shape Click Model (FSCM), which serves as a general solution to multi-block mobile pages. Firstly, we construct a directed acyclic graph (DAG) for each page, where each item is regarded as a vertex and each edge indicates the user's possible examination flow. Secondly, we propose DAG-structured GRUs and a comparison module to model users' sequential (sequential browsing, block skip) and non-sequential (comparison) behaviors respectively. Finally, we combine GRU states and comparison patterns to perform user click predictions. Experiments on a large-scale real-world dataset validate the effectiveness of FSCM on user behavior predictions compared with baseline models.