Time series analysis underpins many real-world applications, yet existing time-series-specific methods and pretrained large-model-based approaches remain limited in integrating intuitive visual reasoning and generalizing across tasks with adaptive tool usage. To address these limitations, we propose MAS4TS, a tool-driven multi-agent system for general time series tasks, built upon an Analyzer-Reasoner-Executor paradigm that integrates agent communication, visual reasoning, and latent reconstruction within a unified framework. MAS4TS first performs visual reasoning over time series plots with structured priors using a Vision-Language Model to extract temporal structures, and subsequently reconstructs predictive trajectories in latent space. Three specialized agents coordinate via shared memory and gated communication, while a router selects task-specific tool chains for execution. Extensive experiments on multiple benchmarks demonstrate that MAS4TS achieves state-of-the-art performance across a wide range of time series tasks, while exhibiting strong generalization and efficient inference.
Large vision-language models have achieved remarkable progress in visual reasoning, yet most existing systems rely on single-step or text-only reasoning, limiting their ability to iteratively refine understanding across multiple visual contexts. To address this limitation, we introduce a new multi-round visual reasoning benchmark with training and test sets spanning both detection and segmentation tasks, enabling systematic evaluation under iterative reasoning scenarios. We further propose RegionReasoner, a reinforcement learning framework that enforces grounded reasoning by requiring each reasoning trace to explicitly cite the corresponding reference bounding boxes, while maintaining semantic coherence via a global-local consistency reward. This reward extracts key objects and nouns from both global scene captions and region-level captions, aligning them with the reasoning trace to ensure consistency across reasoning steps. RegionReasoner is optimized with structured rewards combining grounding fidelity and global-local semantic alignment. Experiments on detection and segmentation tasks show that RegionReasoner-7B, together with our newly introduced benchmark RegionDial-Bench, considerably improves multi-round reasoning accuracy, spatial grounding precision, and global-local consistency, establishing a strong baseline for this emerging research direction.
Vision-Language Models (VLMs) have made great strides in everyday visual tasks, such as captioning a natural image, or answering commonsense questions about such images. But humans possess the puzzling ability to deploy their visual reasoning abilities in radically new situations, a skill rigorously tested by the classic set of visual reasoning challenges known as the Bongard problems. We present a neurosymbolic approach to solving these problems: given a hypothesized solution rule for a Bongard problem, we leverage LLMs to generate parameterized programmatic representations for the rule and perform parameter fitting using Bayesian optimization. We evaluate our method on classifying Bongard problem images given the ground truth rule, as well as on solving the problems from scratch.
Chain-of-Thought reasoning has driven large language models to extend from thinking with text to thinking with images and videos. However, different modalities still have clear limitations: static images struggle to represent temporal structure, while videos introduce substantial redundancy and computational cost. In this work, we propose Thinking with Comics, a visual reasoning paradigm that uses comics as a high information-density medium positioned between images and videos. Comics preserve temporal structure, embedded text, and narrative coherence while requiring significantly lower reasoning cost. We systematically study two reasoning paths based on comics and evaluate them on a range of reasoning tasks and long-context understanding tasks. Experimental results show that Thinking with Comics outperforms Thinking with Images on multi-step temporal and causal reasoning tasks, while remaining substantially more efficient than Thinking with Video. Further analysis indicates that different comic narrative structures and styles consistently affect performance across tasks, suggesting that comics serve as an effective intermediate visual representation for improving multimodal reasoning.
Replicating In-Context Learning (ICL) in computer vision remains challenging due to task heterogeneity. We propose \textbf{VIRAL}, a framework that elicits visual reasoning from a pre-trained image editing model by formulating ICL as conditional generation via visual analogy ($x_s : x_t :: x_q : y_q$). We adapt a frozen Diffusion Transformer (DiT) using role-aware multi-image conditioning and introduce a Mixture-of-Experts LoRA to mitigate gradient interference across diverse tasks. Additionally, to bridge the gaps in current visual context datasets, we curate a large-scale dataset spanning perception, restoration, and editing. Experiments demonstrate that VIRAL outperforms existing methods, validating that a unified V-ICL paradigm can handle the majority of visual tasks, including open-domain editing. Our code is available at https://anonymous.4open.science/r/VIRAL-744A
Synthetic data, an appealing alternative to extensive expert-annotated data for medical image segmentation, consistently fails to improve segmentation performance despite its visual realism. The reason being that synthetic and real medical images exist in different semantic feature spaces, creating a domain gap that current semi-supervised learning methods cannot bridge. We propose SRA-Seg, a framework explicitly designed to align synthetic and real feature distributions for medical image segmentation. SRA-Seg introduces a similarity-alignment (SA) loss using frozen DINOv2 embeddings to pull synthetic representations toward their nearest real counterparts in semantic space. We employ soft edge blending to create smooth anatomical transitions and continuous labels, eliminating the hard boundaries from traditional copy-paste augmentation. The framework generates pseudo-labels for synthetic images via an EMA teacher model and applies soft-segmentation losses that respect uncertainty in mixed regions. Our experiments demonstrate strong results: using only 10% labeled real data and 90% synthetic unlabeled data, SRA-Seg achieves 89.34% Dice on ACDC and 84.42% on FIVES, significantly outperforming existing semi-supervised methods and matching the performance of methods using real unlabeled data.
Interleaved multimodal generation enables capabilities beyond unimodal generation models, such as step-by-step instructional guides, visual planning, and generating visual drafts for reasoning. However, the quality of existing interleaved generation models under general instructions remains limited by insufficient training data and base model capacity. We present DuoGen, a general-purpose interleaved generation framework that systematically addresses data curation, architecture design, and evaluation. On the data side, we build a large-scale, high-quality instruction-tuning dataset by combining multimodal conversations rewritten from curated raw websites, and diverse synthetic examples covering everyday scenarios. Architecturally, DuoGen leverages the strong visual understanding of a pretrained multimodal LLM and the visual generation capabilities of a diffusion transformer (DiT) pretrained on video generation, avoiding costly unimodal pretraining and enabling flexible base model selection. A two-stage decoupled strategy first instruction-tunes the MLLM, then aligns DiT with it using curated interleaved image-text sequences. Across public and newly proposed benchmarks, DuoGen outperforms prior open-source models in text quality, image fidelity, and image-context alignment, and also achieves state-of-the-art performance on text-to-image and image editing among unified generation models. Data and code will be released at https://research.nvidia.com/labs/dir/duogen/.
Large Vision-Language Models (LVLMs) achieve impressive performance across multiple tasks. A significant challenge, however, is their prohibitive inference cost when processing high-resolution visual inputs. While visual token pruning has emerged as a promising solution, existing methods that primarily focus on semantic relevance often discard tokens that are crucial for spatial reasoning. We address this gap through a novel insight into \emph{how LVLMs process spatial reasoning}. Specifically, we reveal that LVLMs implicitly establish visual coordinate systems through Rotary Position Embeddings (RoPE), where specific token positions serve as \textbf{implicit visual coordinates} (IVC tokens) that are essential for spatial reasoning. Based on this insight, we propose \textbf{IVC-Prune}, a training-free, prompt-aware pruning strategy that retains both IVC tokens and semantically relevant foreground tokens. IVC tokens are identified by theoretically analyzing the mathematical properties of RoPE, targeting positions at which its rotation matrices approximate identity matrix or the $90^\circ$ rotation matrix. Foreground tokens are identified through a robust two-stage process: semantic seed discovery followed by contextual refinement via value-vector similarity. Extensive evaluations across four representative LVLMs and twenty diverse benchmarks show that IVC-Prune reduces visual tokens by approximately 50\% while maintaining $\geq$ 99\% of the original performance and even achieving improvements on several benchmarks. Source codes are available at https://github.com/FireRedTeam/IVC-Prune.
The financial domain poses substantial challenges for vision-language models (VLMs) due to specialized chart formats and knowledge-intensive reasoning requirements. However, existing financial benchmarks are largely single-turn and rely on a narrow set of question formats, limiting comprehensive evaluation in realistic application scenarios. To address this gap, we propose FinMTM, a multi-turn multimodal benchmark that expands diversity along both data and task dimensions. On the data side, we curate and annotate 11{,}133 bilingual (Chinese and English) financial QA pairs grounded in financial visuals, including candlestick charts, statistical plots, and report figures. On the task side, FinMTM covers single- and multiple-choice questions, multi-turn open-ended dialogues, and agent-based tasks. We further design task-specific evaluation protocols, including a set-overlap scoring rule for multiple-choice questions, a weighted combination of turn-level and session-level scores for multi-turn dialogues, and a composite metric that integrates planning quality with final outcomes for agent tasks. Extensive experimental evaluation of 22 VLMs reveal their limitations in fine-grained visual perception, long-context reasoning, and complex agent workflows.
Visual token pruning is a promising approach for reducing the computational cost of vision-language models (VLMs), and existing methods often rely on early pruning decisions to improve efficiency. While effective on coarse-grained reasoning tasks, they suffer from significant performance degradation on tasks requiring fine-grained visual details. Through layer-wise analysis, we reveal substantial discrepancies in visual token importance across layers, showing that tokens deemed unimportant at shallow layers can later become highly relevant for text-conditioned reasoning. To avoid irreversible critical information loss caused by premature pruning, we introduce a new pruning paradigm, termed bypass, which preserves unselected visual tokens and forwards them to subsequent pruning stages for re-evaluation. Building on this paradigm, we propose SwiftVLM, a simple and training-free method that performs pruning at model-specific layers with strong visual token selection capability, while enabling independent pruning decisions across layers. Experiments across multiple VLMs and benchmarks demonstrate that SwiftVLM consistently outperforms existing pruning strategies, achieving superior accuracy-efficiency trade-offs and more faithful visual token selection behavior.