Object tracking is the process of locating a moving object over time using a camera.
Real-world scenes are inherently crowded. Hence, estimating 3D poses of all nearby humans, tracking their movements over time, and understanding their activities within social and environmental contexts are essential for many applications, such as autonomous driving, robot perception, robot navigation, and human-robot interaction. However, most existing 3D human pose estimation datasets primarily focus on single-person scenes or are collected in controlled laboratory environments, which restricts their relevance to real-world applications. To bridge this gap, we introduce JRDB-Pose3D, which captures multi-human indoor and outdoor environments from a mobile robotic platform. JRDB-Pose3D provides rich 3D human pose annotations for such complex and dynamic scenes, including SMPL-based pose annotations with consistent body-shape parameters and track IDs for each individual over time. JRDB-Pose3D contains, on average, 5-10 human poses per frame, with some scenes featuring up to 35 individuals simultaneously. The proposed dataset presents unique challenges, including frequent occlusions, truncated bodies, and out-of-frame body parts, which closely reflect real-world environments. Moreover, JRDB-Pose3D inherits all available annotations from the JRDB dataset, such as 2D pose, information about social grouping, activities, and interactions, full-scene semantic masks with consistent human- and object-level tracking, and detailed annotations for each individual, such as age, gender, and race, making it a holistic dataset for a wide range of downstream perception and human-centric understanding tasks.
Objective: EEG-based methods can predict speech intelligibility, but their accuracy and robustness lag behind behavioral tests, which typically show test-retest differences under 1 dB. We introduce the multi-decoder method to predict speech reception thresholds (SRTs) from EEG recordings, enabling objective assessment for populations unable to perform behavioral tests; such as those with disorders of consciousness or during hearing aid fitting. Approach: The method aggregates data from hundreds of decoders, each trained on different speech features and EEG preprocessing setups to quantify neural tracking (NT) of speech signals. Using data from 39 participants (ages 18-24), we recorded 29 minutes of EEG per person while they listened to speech at six signal-to-noise ratios and a quiet story. NT values were combined into a high-dimensional feature vector per subject, and a support vector regression model was trained to predict SRTs from these vectors. Main Result: Predictions correlated significantly with behavioral SRTs (r = 0.647, p < 0.001; NRMSE = 0.19), with all differences under 1 dB. SHAP analysis showed theta/delta bands and early lags had slightly greater influence. Using pretrained subject-independent decoders reduced required EEG data collection to 15 minutes (3 minutes of story, 12 minutes across six SNR conditions) without losing accuracy.
A common assumption in representation learning is that globally well-distributed embeddings support robust and generalizable representations. This focus has shaped both training objectives and evaluation protocols, implicitly treating global geometry as a proxy for representational competence. While global geometry effectively encodes which elements are present, it is often insensitive to how they are composed. We investigate this limitation by testing the ability of geometric metrics to predict compositional binding across 21 vision encoders. We find that standard geometry-based statistics exhibit near-zero correlation with compositional binding. In contrast, functional sensitivity, as measured by the input-output Jacobian, reliably tracks this capability. We further provide an analytic account showing that this disparity arises from objective design, as existing losses explicitly constrain embedding geometry but leave the local input-output mapping unconstrained. These results suggest that global embedding geometry captures only a partial view of representational competence and establish functional sensitivity as a critical complementary axis for modeling composite structure.
High-resolution radar sensors are critical for autonomous systems but pose significant challenges to traditional tracking algorithms due to the generation of multiple measurements per object and the presence of multipath effects. Existing solutions often rely on the point target assumption or treat multipath measurements as clutter, whereas current extended target trackers often lack the capability to maintain trajectory continuity in complex multipath environments. To address these limitations, this paper proposes the multipath extended target generalized labeled multi-Bernoulli (MPET-GLMB) filter. A unified Bayesian framework based on labeled random finite set theory is derived to jointly model target existence, measurement partitioning, and the association between measurements, targets, and propagation paths. This formulation enables simultaneous trajectory estimation for both targets and reflectors without requiring heuristic post-processing. To enhance computational efficiency, a joint prediction and update implementation based on Gibbs sampling is developed. Furthermore, a measurement-driven adaptive birth model is introduced to initialize tracks without prior knowledge of target positions. Experimental results from simulated scenarios and real-world automotive radar data demonstrate that the proposed filter outperforms state-of-the-art methods, achieving superior state estimation accuracy and robust trajectory maintenance in dynamic multipath environments.
Outside-in multi-camera perception is increasingly important in indoor environments, where networks of static cameras must support multi-target tracking under occlusion and heterogeneous viewpoints. We evaluate Sparse4D, a query-based spatiotemporal 3D detection and tracking framework that fuses multi-view features in a shared world frame and propagates sparse object queries via instance memory. We study reduced input frame rates, post-training quantization (INT8 and FP8), transfer to the WILDTRACK benchmark, and Transformer Engine mixed-precision fine-tuning. To better capture identity stability, we report Average Track Duration (AvgTrackDur), which measures identity persistence in seconds. Sparse4D remains stable under moderate FPS reductions, but below 2 FPS, identity association collapses even when detections are stable. Selective quantization of the backbone and neck offers the best speed-accuracy trade-off, while attention-related modules are consistently sensitive to low precision. On WILDTRACK, low-FPS pretraining yields large zero-shot gains over the base checkpoint, while small-scale fine-tuning provides limited additional benefit. Transformer Engine mixed precision reduces latency and improves camera scalability, but can destabilize identity propagation, motivating stability-aware validation.
We address dynamic manipulation of deformable linear objects by presenting SPiD, a physics-informed self-supervised learning framework that couples an accurate deformable object model with an augmented self-supervised training strategy. On the modeling side, we extend a mass-spring model to more accurately capture object dynamics while remaining lightweight enough for high-throughput rollouts during self-supervised learning. On the learning side, we train a neural controller using a task-oriented cost, enabling end-to-end optimization through interaction with the differentiable object model. In addition, we propose a self-supervised DAgger variant that detects distribution shift during deployment and performs offline self-correction to further enhance robustness without expert supervision. We evaluate our method primarily on the rope stabilization task, where a robot must bring a swinging rope to rest as quickly and smoothly as possible. Extensive experiments in both simulation and the real world demonstrate that the proposed controller achieves fast and smooth rope stabilization, generalizing across unseen initial states, rope lengths, masses, non-uniform mass distributions, and external disturbances. Additionally, we develop an affordable markerless rope perception method and demonstrate that our controller maintains performance with noisy and low-frequency state updates. Furthermore, we demonstrate the generality of the framework by extending it to the rope trajectory tracking task. Overall, SPiD offers a data-efficient, robust, and physically grounded framework for dynamic manipulation of deformable linear objects, featuring strong sim-to-real generalization.
Likelihood-based policy gradient methods are the dominant approach for training robot control policies from rewards. These methods rely on differentiable action likelihoods, which constrain policy outputs to simple distributions like Gaussians. In this work, we show how flow matching policy gradients -- a recent framework that bypasses likelihood computation -- can be made effective for training and fine-tuning more expressive policies in challenging robot control settings. We introduce an improved objective that enables success in legged locomotion, humanoid motion tracking, and manipulation tasks, as well as robust sim-to-real transfer on two humanoid robots. We then present ablations and analysis on training dynamics. Results show how policies can exploit the flow representation for exploration when training from scratch, as well as improved fine-tuning robustness over baselines.
Articulation modeling enables robots to learn joint parameters of articulated objects for effective manipulation which can then be used downstream for skill learning or planning. Existing approaches often rely on prior knowledge about the objects, such as the number or type of joints. Some of these approaches also fail to recover occluded joints that are only revealed during interaction. Others require large numbers of multi-view images for every object, which is impractical in real-world settings. Furthermore, prior works neglect the order of manipulations, which is essential for many multi-DoF objects where one joint must be operated before another, such as a dishwasher. We introduce PokeNet, an end-to-end framework that estimates articulation models from a single human demonstration without prior object knowledge. Given a sequence of point cloud observations of a human manipulating an unknown object, PokeNet predicts joint parameters, infers manipulation order, and tracks joint states over time. PokeNet outperforms existing state-of-the-art methods, improving joint axis and state estimation accuracy by an average of over 27% across diverse objects, including novel and unseen categories. We demonstrate these gains in both simulation and real-world environments.
Visual tracking aims to automatically estimate the state of a target object in a video sequence, which is challenging especially in dynamic scenarios. Thus, numerous methods are proposed to introduce temporal cues to enhance tracking robustness. However, conventional CNN and Transformer architectures exhibit inherent limitations in modeling long-range temporal dependencies in visual tracking, often necessitating either complex customized modules or substantial computational costs to integrate temporal cues. Inspired by the success of the state space model, we propose a novel temporal modeling paradigm for visual tracking, termed State-aware Mamba Tracker (SMTrack), providing a neat pipeline for training and tracking without needing customized modules or substantial computational costs to build long-range temporal dependencies. It enjoys several merits. First, we propose a novel selective state-aware space model with state-wise parameters to capture more diverse temporal cues for robust tracking. Second, SMTrack facilitates long-range temporal interactions with linear computational complexity during training. Third, SMTrack enables each frame to interact with previously tracked frames via hidden state propagation and updating, which releases computational costs of handling temporal cues during tracking. Extensive experimental results demonstrate that SMTrack achieves promising performance with low computational costs.
Despite advances in multimodal large language models, autonomous web agents still struggle to reliably execute long-horizon tasks on complex and dynamic web interfaces. Existing agents often suffer from inaccurate element grounding, the absence of site-specific procedural knowledge, and unstable long-term task tracking and memory, particularly when operating over complex Document Object Model structures. To address these limitations, we introduce Avenir-Web, a web agent that achieves a new open-source state of the art on the Online-Mind2Web benchmark in real-world deployment. Avenir-Web leverages a Mixture of Grounding Experts, Experience-Imitation Planning for incorporating procedural priors, and a task-tracking checklist combined with adaptive memory to enable robust and seamless interaction across diverse user interface paradigms. We evaluate Avenir-Web on Online-Mind2Web, a rigorous benchmark of live and user-centered web tasks. Our results demonstrate that Avenir-Web significantly surpasses prior open-source agents and attains performance parity with top-tier proprietary models, thereby establishing a new open-source state of the art for reliable web agents on live websites.