Abstract:Vision camera and sonar are naturally complementary in the underwater environment. Combining the information from two modalities will promote better observation of underwater targets. However, this problem has not received sufficient attention in previous research. Therefore, this paper introduces a new challenging RGB-Sonar (RGB-S) tracking task and investigates how to achieve efficient tracking of an underwater target through the interaction of RGB and sonar modalities. Specifically, we first propose an RGBS50 benchmark dataset containing 50 sequences and more than 87000 high-quality annotated bounding boxes. Experimental results show that the RGBS50 benchmark poses a challenge to currently popular SOT trackers. Second, we propose an RGB-S tracker called SCANet, which includes a spatial cross-attention module (SCAM) consisting of a novel spatial cross-attention layer and two independent global integration modules. The spatial cross-attention is used to overcome the problem of spatial misalignment of between RGB and sonar images. Third, we propose a SOT data-based RGB-S simulation training method (SRST) to overcome the lack of RGB-S training datasets. It converts RGB images into sonar-like saliency images to construct pseudo-data pairs, enabling the model to learn the semantic structure of RGB-S-like data. Comprehensive experiments show that the proposed spatial cross-attention effectively achieves the interaction between RGB and sonar modalities and SCANet achieves state-of-the-art performance on the proposed benchmark. The code is available at https://github.com/LiYunfengLYF/RGBS50.
Abstract:Complementary RGB and TIR modalities enable RGB-T tracking to achieve competitive performance in challenging scenarios. Therefore, how to better fuse cross-modal features is the core issue of RGB-T tracking. Some previous methods either insufficiently fuse RGB and TIR features, or depend on intermediaries containing information from both modalities to achieve cross-modal information interaction. The former does not fully exploit the potential of using only RGB and TIR information of the template or search region for channel and spatial feature fusion, and the latter lacks direct interaction between the template and search area, which limits the model's ability to fully exploit the original semantic information of both modalities. To alleviate these limitations, we explore how to improve the performance of a visual Transformer by using direct fusion of cross-modal channels and spatial features, and propose CSTNet. CSTNet uses ViT as a backbone and inserts cross-modal channel feature fusion modules (CFM) and cross-modal spatial feature fusion modules (SFM) for direct interaction between RGB and TIR features. The CFM performs parallel joint channel enhancement and joint multilevel spatial feature modeling of RGB and TIR features and sums the features, and then globally integrates the sum feature with the original features. The SFM uses cross-attention to model the spatial relationship of cross-modal features and then introduces a convolutional feedforward network for joint spatial and channel integration of multimodal features. Comprehensive experiments show that CSTNet achieves state-of-the-art performance on three public RGB-T tracking benchmarks. Code is available at https://github.com/LiYunfengLYF/CSTNet.
Abstract:Although single object trackers have achieved advanced performance, their large-scale models make it difficult to apply them on the platforms with limited resources. Moreover, existing lightweight trackers only achieve balance between 2-3 points in terms of parameters, performance, Flops and FPS. To achieve the optimal balance among these points, this paper propose a lightweight full-convolutional Siamese tracker called LightFC. LightFC employs a novel efficient cross-correlation module (ECM) and a novel efficient rep-center head (ERH) to enhance the nonlinear expressiveness of the convolutional tracking pipeline. The ECM employs an attention-like module design, which conducts spatial and channel linear fusion of fused features and enhances the nonlinearly of the fused features. Additionally, it references successful factors of current lightweight trackers and introduces skip-connections and reuse of search area features. The ERH reparameterizes the feature dimensional stage in the standard center head and introduces channel attention to optimize the bottleneck of key feature flows. Comprehensive experiments show that LightFC achieves the optimal balance between performance, parameters, Flops and FPS. The precision score of LightFC outperforms MixFormerV2-S by 3.7 \% and 6.5 \% on LaSOT and TNL2K, respectively, while using 5x fewer parameters and 4.6x fewer Flops. Besides, LightFC runs 2x faster than MixFormerV2-S on CPUs. Our code and raw results can be found at https://github.com/LiYunfengLYF/LightFC
Abstract:Underwater object detection faces the problem of underwater image degradation, which affects the performance of the detector. Underwater object detection methods based on noise reduction and image enhancement usually do not provide images preferred by the detector or require additional datasets. In this paper, we propose a plug-and-play Underwater joint image enhancement Module (UnitModule) that provides the input image preferred by the detector. We design an unsupervised learning loss for the joint training of UnitModule with the detector without additional datasets to improve the interaction between UnitModule and the detector. Furthermore, a color cast predictor with the assisting color cast loss and a data augmentation called Underwater Color Random Transfer (UCRT) are designed to improve the performance of UnitModule on underwater images with different color casts. Extensive experiments are conducted on DUO for different object detection models, where UnitModule achieves the highest performance improvement of 2.6 AP for YOLOv5-S and gains the improvement of 3.3 AP on the brand-new test set (URPCtest). And UnitModule significantly improves the performance of all object detection models we test, especially for models with a small number of parameters. In addition, UnitModule with a small number of parameters of 31K has little effect on the inference speed of the original object detection model. Our quantitative and visual analysis also demonstrates the effectiveness of UnitModule in enhancing the input image and improving the perception ability of the detector for object features.
Abstract:Hierarchical multi-label text classification aims to classify the input text into multiple labels, among which the labels are structured and hierarchical. It is a vital task in many real world applications, e.g. scientific literature archiving. In this paper, we survey the recent progress of hierarchical multi-label text classification, including the open sourced data sets, the main methods, evaluation metrics, learning strategies and the current challenges. A few future research directions are also listed for community to further improve this field.
Abstract:The popularization of intelligent healthcare devices and big data analytics significantly boosts the development of smart healthcare networks (SHNs). To enhance the precision of diagnosis, different participants in SHNs share health data that contains sensitive information. Therefore, the data exchange process raises privacy concerns, especially when the integration of health data from multiple sources (linkage attack) results in further leakage. Linkage attack is a type of dominant attack in the privacy domain, which can leverage various data sources for private data mining. Furthermore, adversaries launch poisoning attacks to falsify the health data, which leads to misdiagnosing or even physical damage. To protect private health data, we propose a personalized differential privacy model based on the trust levels among users. The trust is evaluated by a defined community density, while the corresponding privacy protection level is mapped to controllable randomized noise constrained by differential privacy. To avoid linkage attacks in personalized differential privacy, we designed a noise correlation decoupling mechanism using a Markov stochastic process. In addition, we build the community model on a blockchain, which can mitigate the risk of poisoning attacks during differentially private data transmission over SHNs. To testify the effectiveness and superiority of the proposed approach, we conduct extensive experiments on benchmark datasets.
Abstract:Visual tracker includes network and post-processing. Despite the color distortion and low contrast of underwater images, advanced trackers can still be very competitive in underwater object tracking because deep learning empowers the networks to discriminate the appearance features of the target. However, underwater object tracking also faces another problem. Underwater targets such as fish and dolphins, usually appear in groups, and creatures of the same species usually have similar expressions of appearance features, so it is challenging to distinguish the weak differences characteristics only by the network itself. The existing detection-based post-processing only reflects the results of single frame detection, but cannot locate real targets among similar targets. In this paper, we propose a new post-processing strategy based on motion, which uses Kalman filter (KF) to maintain the motion information of the target and exclude similar targets around. Specifically, we use the KF predicted box and the candidate boxes in the response map and their confidence to calculate the candidate location score to find the real target. Our method does not change the network structure, nor does it perform additional training for the tracker. It can be quickly applied to other tracking fields with similar target problem. We improved SOTA trackers based on our method, and proved the effectiveness of our method on UOT100 and UTB180. The AUC of our method for OSTrack on similar subsequences is improved by more than 3% on average, and the precision and normalization precision are improved by more than 3.5% on average. It has been proved that our method has good compatibility in dealing with similar target problems and can enhance performance of the tracker together with other methods. More details can be found in: https://github.com/LiYunfengLYF/KF_in_underwater_trackers.
Abstract:Knowledge graph completion (KGC) can predict missing links and is crucial for real-world knowledge graphs, which widely suffer from incompleteness. KGC methods assume a knowledge graph is static, but that may lead to inaccurate prediction results because many facts in the knowledge graphs change over time. Recently, emerging methods have shown improved predictive results by further incorporating the timestamps of facts; namely, temporal knowledge graph completion (TKGC). With this temporal information, TKGC methods can learn the dynamic evolution of the knowledge graph that KGC methods fail to capture. In this paper, for the first time, we summarize the recent advances in TKGC research. First, we detail the background of TKGC, including the problem definition, benchmark datasets, and evaluation metrics. Then, we summarize existing TKGC methods based on how timestamps of facts are used to capture the temporal dynamics. Finally, we conclude the paper and present future research directions of TKGC.
Abstract:Matrix factorization (MF) has been widely applied to collaborative filtering in recommendation systems. Its Bayesian variants can derive posterior distributions of user and item embeddings, and are more robust to sparse ratings. However, the Bayesian methods are restricted by their update rules for the posterior parameters due to the conjugacy of the priors and the likelihood. Neural networks can potentially address this issue by capturing complex mappings between the posterior parameters and the data. In this paper, we propose a variational auto-encoder based Bayesian MF framework. It leverages not only the data but also the information from the embeddings to approximate their joint posterior distribution. The approximation is an iterative procedure with cross feedback of user and item embeddings to the others' encoders. More specifically, user embeddings sampled in the previous iteration, alongside their ratings, are fed back into the item-side encoders to compute the posterior parameters for the item embeddings in the current iteration, and vice versa. The decoder network then reconstructs the data using the MF with the currently re-sampled user and item embeddings. We show the effectiveness of our framework in terms of reconstruction errors across five real-world datasets. We also perform ablation studies to illustrate the importance of the cross feedback component of our framework in lowering the reconstruction errors and accelerating the convergence.
Abstract:Non-negative tensor factorization models enable predictive analysis on count data. Among them, Bayesian Poisson-Gamma models are able to derive full posterior distributions of latent factors and are less sensitive to sparse count data. However, current inference methods for these Bayesian models adopt restricted update rules for the posterior parameters. They also fail to share the update information to better cope with the data sparsity. Moreover, these models are not endowed with a component that handles the imbalance in count data values. In this paper, we propose a novel variational auto-encoder framework called VAE-BPTF which addresses the above issues. It uses multi-layer perceptron networks to encode and share complex update information. The encoded information is then reweighted per data instance to penalize common data values before aggregated to compute the posterior parameters for the latent factors. Under synthetic data evaluation, VAE-BPTF tended to recover the right number of latent factors and posterior parameter values. It also outperformed current models in both reconstruction errors and latent factor (semantic) coherence across five real-world datasets. Furthermore, the latent factors inferred by VAE-BPTF are perceived to be meaningful and coherent under a qualitative analysis.