Abstract:With the booming development of prosumers, there is an urgent need for a prosumer energy management system to take full advantage of the flexibility of prosumers and take into account the interests of other parties. However, building such a system will undoubtedly reveal users' privacy. In this paper, by solving the non-independent and identical distribution of data (Non-IID) problem in federated learning with federated cluster average(FedClusAvg) algorithm, prosumers' information can efficiently participate in the intelligent decision making of the system without revealing privacy. In the proposed FedClusAvg algorithm, each client performs cluster stratified sampling and multiple iterations. Then, the average weight of the parameters of the sub-server is determined according to the degree of deviation of the parameter from the average parameter. Finally, the sub-server multiple local iterations and updates, and then upload to the main server. The advantages of FedClusAvg algorithm are the following two parts. First, the accuracy of the model in the case of Non-IID is improved through the method of clustering and parameter weighted average. Second, local multiple iterations and three-tier framework can effectively reduce communication rounds.
Abstract:The gossip-based distributed algorithms are widely used to solve decentralized optimization problems in various multi-agent applications, while they are generally vulnerable to data injection attacks by internal malicious agents as each agent locally estimates its decent direction without an authorized supervision. In this work, we explore the application of artificial intelligence (AI) technologies to detect internal attacks. We show that a general neural network is particularly suitable for detecting and localizing the malicious agents, as they can effectively explore nonlinear relationship underlying the collected data. Moreover, we propose to adopt one of the state-of-art approaches in federated learning, i.e., a collaborative peer-to-peer machine learning protocol, to facilitate training our neural network models by gossip exchanges. This advanced approach is expected to make our model more robust to challenges with insufficient training data, or mismatched test data. In our simulations, a least-squared problem is considered to verify the feasibility and effectiveness of AI-based methods. Simulation results demonstrate that the proposed AI-based methods are beneficial to improve performance of detecting and localizing malicious agents over score-based methods, and the peer-to-peer neural network model is indeed robust to target issues.