Abstract:Audio-driven portrait animation has made significant advances with diffusion-based models, improving video quality and lipsync accuracy. However, the increasing complexity of these models has led to inefficiencies in training and inference, as well as constraints on video length and inter-frame continuity. In this paper, we propose JoyVASA, a diffusion-based method for generating facial dynamics and head motion in audio-driven facial animation. Specifically, in the first stage, we introduce a decoupled facial representation framework that separates dynamic facial expressions from static 3D facial representations. This decoupling allows the system to generate longer videos by combining any static 3D facial representation with dynamic motion sequences. Then, in the second stage, a diffusion transformer is trained to generate motion sequences directly from audio cues, independent of character identity. Finally, a generator trained in the first stage uses the 3D facial representation and the generated motion sequences as inputs to render high-quality animations. With the decoupled facial representation and the identity-independent motion generation process, JoyVASA extends beyond human portraits to animate animal faces seamlessly. The model is trained on a hybrid dataset of private Chinese and public English data, enabling multilingual support. Experimental results validate the effectiveness of our approach. Future work will focus on improving real-time performance and refining expression control, further expanding the applications in portrait animation. The code will be available at: https://jdhalgo.github.io/JoyVASA.
Abstract:Video-based physiology, exemplified by remote photoplethysmography (rPPG), extracts physiological signals such as pulse and respiration by analyzing subtle changes in video recordings. This non-contact, real-time monitoring method holds great potential for home settings. Despite the valuable contributions of public benchmark datasets to this technology, there is currently no dataset specifically designed for passive home monitoring. Existing datasets are often limited to close-up, static, frontal recordings and typically include only 1-2 physiological signals. To advance video-based physiology in real home settings, we introduce the MHAD dataset. It comprises 1,440 videos from 40 subjects, capturing 6 typical activities from 3 angles in a real home environment. Additionally, 5 physiological signals were recorded, making it a comprehensive video-based physiology dataset. MHAD is compatible with the rPPG-toolbox and has been validated using several unsupervised and supervised methods. Our dataset is publicly available at https://github.com/jdh-algo/MHAD-Dataset.
Abstract:This report introduces the Qwen2 series, the latest addition to our large language models and large multimodal models. We release a comprehensive suite of foundational and instruction-tuned language models, encompassing a parameter range from 0.5 to 72 billion, featuring dense models and a Mixture-of-Experts model. Qwen2 surpasses most prior open-weight models, including its predecessor Qwen1.5, and exhibits competitive performance relative to proprietary models across diverse benchmarks on language understanding, generation, multilingual proficiency, coding, mathematics, and reasoning. The flagship model, Qwen2-72B, showcases remarkable performance: 84.2 on MMLU, 37.9 on GPQA, 64.6 on HumanEval, 89.5 on GSM8K, and 82.4 on BBH as a base language model. The instruction-tuned variant, Qwen2-72B-Instruct, attains 9.1 on MT-Bench, 48.1 on Arena-Hard, and 35.7 on LiveCodeBench. Moreover, Qwen2 demonstrates robust multilingual capabilities, proficient in approximately 30 languages, spanning English, Chinese, Spanish, French, German, Arabic, Russian, Korean, Japanese, Thai, Vietnamese, and more, underscoring its versatility and global reach. To foster community innovation and accessibility, we have made the Qwen2 model weights openly available on Hugging Face and ModelScope, and the supplementary materials including example code on GitHub. These platforms also include resources for quantization, fine-tuning, and deployment, facilitating a wide range of applications and research endeavors.
Abstract:Large language models (LLMs) have achieved great success in many fields, and recent works have studied exploring LLMs for graph discriminative tasks such as node classification. However, the abilities of LLMs for graph generation remain unexplored in the literature. Graph generation requires the LLM to generate graphs with given properties, which has valuable real-world applications such as drug discovery, while tends to be more challenging. In this paper, we propose LLM4GraphGen to explore the ability of LLMs for graph generation with systematical task designs and extensive experiments. Specifically, we propose several tasks tailored with comprehensive experiments to address key questions regarding LLMs' understanding of different graph structure rules, their ability to capture structural type distributions, and their utilization of domain knowledge for property-based graph generation. Our evaluations demonstrate that LLMs, particularly GPT-4, exhibit preliminary abilities in graph generation tasks, including rule-based and distribution-based generation. We also observe that popular prompting methods, such as few-shot and chain-of-thought prompting, do not consistently enhance performance. Besides, LLMs show potential in generating molecules with specific properties. These findings may serve as foundations for designing good LLMs based models for graph generation and provide valuable insights and further research.
Abstract:Large language models (LLMs) have revolutionized the field of artificial intelligence, enabling natural language processing tasks that were previously thought to be exclusive to humans. In this work, we introduce Qwen, the first installment of our large language model series. Qwen is a comprehensive language model series that encompasses distinct models with varying parameter counts. It includes Qwen, the base pretrained language models, and Qwen-Chat, the chat models finetuned with human alignment techniques. The base language models consistently demonstrate superior performance across a multitude of downstream tasks, and the chat models, particularly those trained using Reinforcement Learning from Human Feedback (RLHF), are highly competitive. The chat models possess advanced tool-use and planning capabilities for creating agent applications, showcasing impressive performance even when compared to bigger models on complex tasks like utilizing a code interpreter. Furthermore, we have developed coding-specialized models, Code-Qwen and Code-Qwen-Chat, as well as mathematics-focused models, Math-Qwen-Chat, which are built upon base language models. These models demonstrate significantly improved performance in comparison with open-source models, and slightly fall behind the proprietary models.
Abstract:Influenced by the great success of deep learning via cloud computing and the rapid development of edge chips, research in artificial intelligence (AI) has shifted to both of the computing paradigms, i.e., cloud computing and edge computing. In recent years, we have witnessed significant progress in developing more advanced AI models on cloud servers that surpass traditional deep learning models owing to model innovations (e.g., Transformers, Pretrained families), explosion of training data and soaring computing capabilities. However, edge computing, especially edge and cloud collaborative computing, are still in its infancy to announce their success due to the resource-constrained IoT scenarios with very limited algorithms deployed. In this survey, we conduct a systematic review for both cloud and edge AI. Specifically, we are the first to set up the collaborative learning mechanism for cloud and edge modeling with a thorough review of the architectures that enable such mechanism. We also discuss potentials and practical experiences of some on-going advanced edge AI topics including pretraining models, graph neural networks and reinforcement learning. Finally, we discuss the promising directions and challenges in this field.
Abstract:Eye movements have been widely investigated to study the atypical visual attention in Autism Spectrum Disorder (ASD). The majority of these studies have been focused on limited eye movement features by statistical comparisons between ASD and Typically Developing (TD) groups, which make it difficult to accurately separate ASD from TD at the individual level. The deep learning technology has been highly successful in overcoming this issue by automatically extracting features important for classification through a data-driven learning process. However, there is still a lack of end-to-end deep learning framework for recognition of abnormal attention in ASD. In this study, we developed a novel two-stream deep learning network for this recognition based on 700 images and corresponding eye movement patterns of ASD and TD, and obtained an accuracy of 0.95, which was higher than the previous state-of-the-art. We next characterized contributions to the classification at the single image level and non-linearly integration of this single image level information during the classification. Moreover, we identified a group of pixel-level visual features within these images with greater impacts on the classification. Together, this two-stream deep learning network provides us a novel and powerful tool to recognize and understand abnormal visual attention in ASD.
Abstract:Recent studies have demonstrated that the convolutional networks heavily rely on the quality and quantity of generated features. However, in lightweight networks, there are limited available feature information because these networks tend to be shallower and thinner due to the efficiency consideration. For farther improving the performance and accuracy of lightweight networks, we develop Super Interaction Neural Networks (SINet) model from a novel point of view: enhancing the information interaction in neural networks. In order to achieve information interaction along the width of the deep network, we propose Exchange Shortcut Connection, which can integrate the information from different convolution groups without any extra computation cost. And then, in order to achieve information interaction along the depth of the network, we proposed Dense Funnel Layer and Attention based Hierarchical Joint Decision, which are able to make full use of middle layer features. Our experiments show that the superior performance of SINet over other state-of-the-art lightweight models in ImageNet dataset. Furthermore, we also exhibit the effectiveness and universality of our proposed components by ablation studies.
Abstract:Class incremental learning refers to a special multi-class classification task, in which the number of classes is not fixed but is increasing with the continual arrival of new data. Existing researches mainly focused on solving catastrophic forgetting problem in class incremental learning. To this end, however, these models still require the old classes cached in the auxiliary data structure or models, which is inefficient in space or time. In this paper, it is the first time to discuss the difficulty without support of old classes in class incremental learning, which is called as softmax suppression problem. To address these challenges, we develop a new model named Label Mapping with Response Consolidation (LMRC), which need not access the old classes anymore. We propose the Label Mapping algorithm combined with the multi-head neural network for mitigating the softmax suppression problem, and propose the Response Consolidation method to overcome the catastrophic forgetting problem. Experimental results on the benchmark datasets show that our proposed method achieves much better performance compared to the related methods in different scenarios.