What is Video Denoising? Video denoising is the process of removing noise from video sequences to improve their quality.
Papers and Code
Nov 26, 2024
Abstract:Diffusion Transformers (DiT), an emerging image and video generation model architecture, has demonstrated great potential because of its high generation quality and scalability properties. Despite the impressive performance, its practical deployment is constrained by computational complexity and redundancy in the sequential denoising process. While feature caching across timesteps has proven effective in accelerating diffusion models, its application to DiT is limited by fundamental architectural differences from U-Net-based approaches. Through empirical analysis of DiT feature dynamics, we identify that significant feature variation between DiT blocks presents a key challenge for feature reusability. To address this, we convert standard DiT into Skip-DiT with skip branches to enhance feature smoothness. Further, we introduce Skip-Cache which utilizes the skip branches to cache DiT features across timesteps at the inference time. We validated effectiveness of our proposal on different DiT backbones for video and image generation, showcasing skip branches to help preserve generation quality and achieve higher speedup. Experimental results indicate that Skip-DiT achieves a 1.5x speedup almost for free and a 2.2x speedup with only a minor reduction in quantitative metrics. Code is available at https://github.com/OpenSparseLLMs/Skip-DiT.git.
* 17 pages, 8 figures
Via
Nov 26, 2024
Abstract:Current diffusion models for human image animation struggle to ensure identity (ID) consistency. This paper presents StableAnimator, the first end-to-end ID-preserving video diffusion framework, which synthesizes high-quality videos without any post-processing, conditioned on a reference image and a sequence of poses. Building upon a video diffusion model, StableAnimator contains carefully designed modules for both training and inference striving for identity consistency. In particular, StableAnimator begins by computing image and face embeddings with off-the-shelf extractors, respectively and face embeddings are further refined by interacting with image embeddings using a global content-aware Face Encoder. Then, StableAnimator introduces a novel distribution-aware ID Adapter that prevents interference caused by temporal layers while preserving ID via alignment. During inference, we propose a novel Hamilton-Jacobi-Bellman (HJB) equation-based optimization to further enhance the face quality. We demonstrate that solving the HJB equation can be integrated into the diffusion denoising process, and the resulting solution constrains the denoising path and thus benefits ID preservation. Experiments on multiple benchmarks show the effectiveness of StableAnimator both qualitatively and quantitatively.
Via
Nov 25, 2024
Abstract:Generating continuous sign language videos from discrete segments is challenging due to the need for smooth transitions that preserve natural flow and meaning. Traditional approaches that simply concatenate isolated signs often result in abrupt transitions, disrupting video coherence. To address this, we propose a novel framework, Sign-D2C, that employs a conditional diffusion model to synthesize contextually smooth transition frames, enabling the seamless construction of continuous sign language sequences. Our approach transforms the unsupervised problem of transition frame generation into a supervised training task by simulating the absence of transition frames through random masking of segments in long-duration sign videos. The model learns to predict these masked frames by denoising Gaussian noise, conditioned on the surrounding sign observations, allowing it to handle complex, unstructured transitions. During inference, we apply a linearly interpolating padding strategy that initializes missing frames through interpolation between boundary frames, providing a stable foundation for iterative refinement by the diffusion model. Extensive experiments on the PHOENIX14T, USTC-CSL100, and USTC-SLR500 datasets demonstrate the effectiveness of our method in producing continuous, natural sign language videos.
* 10 pages, 4 figures
Via
Nov 25, 2024
Abstract:With the advance of diffusion models, today's video generation has achieved impressive quality. To extend the generation length and facilitate real-world applications, a majority of video diffusion models (VDMs) generate videos in an autoregressive manner, i.e., generating subsequent clips conditioned on the last frame(s) of the previous clip. However, existing autoregressive VDMs are highly inefficient and redundant: The model must re-compute all the conditional frames that are overlapped between adjacent clips. This issue is exacerbated when the conditional frames are extended autoregressively to provide the model with long-term context. In such cases, the computational demands increase significantly (i.e., with a quadratic complexity w.r.t. the autoregression step). In this paper, we propose Ca2-VDM, an efficient autoregressive VDM with Causal generation and Cache sharing. For causal generation, it introduces unidirectional feature computation, which ensures that the cache of conditional frames can be precomputed in previous autoregression steps and reused in every subsequent step, eliminating redundant computations. For cache sharing, it shares the cache across all denoising steps to avoid the huge cache storage cost. Extensive experiments demonstrated that our Ca2-VDM achieves state-of-the-art quantitative and qualitative video generation results and significantly improves the generation speed. Code is available at https://github.com/Dawn-LX/CausalCache-VDM
Via
Nov 21, 2024
Abstract:The field of novel view synthesis has made significant strides thanks to the development of radiance field methods. However, most radiance field techniques are far better at novel view interpolation than novel view extrapolation where the synthesis novel views are far beyond the observed training views. We design ViewExtrapolator, a novel view synthesis approach that leverages the generative priors of Stable Video Diffusion (SVD) for realistic novel view extrapolation. By redesigning the SVD denoising process, ViewExtrapolator refines the artifact-prone views rendered by radiance fields, greatly enhancing the clarity and realism of the synthesized novel views. ViewExtrapolator is a generic novel view extrapolator that can work with different types of 3D rendering such as views rendered from point clouds when only a single view or monocular video is available. Additionally, ViewExtrapolator requires no fine-tuning of SVD, making it both data-efficient and computation-efficient. Extensive experiments demonstrate the superiority of ViewExtrapolator in novel view extrapolation. Project page: \url{https://kunhao-liu.github.io/ViewExtrapolator/}.
Via
Nov 21, 2024
Abstract:Transformer-based diffusion models, dubbed Diffusion Transformers (DiTs), have achieved state-of-the-art performance in image and video generation tasks. However, their large model size and slow inference speed limit their practical applications, calling for model compression methods such as quantization. Unfortunately, existing DiT quantization methods overlook (1) the impact of reconstruction and (2) the varying quantization sensitivities across different layers, which hinder their achievable performance. To tackle these issues, we propose innovative time-aware quantization for DiTs (TaQ-DiT). Specifically, (1) we observe a non-convergence issue when reconstructing weights and activations separately during quantization and introduce a joint reconstruction method to resolve this problem. (2) We discover that Post-GELU activations are particularly sensitive to quantization due to their significant variability across different denoising steps as well as extreme asymmetries and variations within each step. To address this, we propose time-variance-aware transformations to facilitate more effective quantization. Experimental results show that when quantizing DiTs' weights to 4-bit and activations to 8-bit (W4A8), our method significantly surpasses previous quantization methods.
Via
Nov 21, 2024
Abstract:Existing feed-forward image-to-3D methods mainly rely on 2D multi-view diffusion models that cannot guarantee 3D consistency. These methods easily collapse when changing the prompt view direction and mainly handle object-centric prompt images. In this paper, we propose a novel single-stage 3D diffusion model, DiffusionGS, for object and scene generation from a single view. DiffusionGS directly outputs 3D Gaussian point clouds at each timestep to enforce view consistency and allow the model to generate robustly given prompt views of any directions, beyond object-centric inputs. Plus, to improve the capability and generalization ability of DiffusionGS, we scale up 3D training data by developing a scene-object mixed training strategy. Experiments show that our method enjoys better generation quality (2.20 dB higher in PSNR and 23.25 lower in FID) and over 5x faster speed (~6s on an A100 GPU) than SOTA methods. The user study and text-to-3D applications also reveals the practical values of our method. Our Project page at https://caiyuanhao1998.github.io/project/DiffusionGS/ shows the video and interactive generation results.
* A novel one-stage 3DGS-based diffusion generates objects and scenes
from a single view in ~6 seconds
Via
Nov 14, 2024
Abstract:Fluorescence guided surgery (FGS) is a promising surgical technique that gives surgeons a unique view of tissue that is used to guide their practice by delineating tissue types and diseased areas. As new fluorescent contrast agents are developed that have low fluorescent photon yields, it becomes increasingly important to develop computational models to allow FGS systems to maintain good video quality in real time environments. To further complicate this task, FGS has a difficult bias noise term from laser leakage light (LLL) that represents unfiltered excitation light that can be on the order of the fluorescent signal. Most conventional video denoising methods focus on zero mean noise, and non-causal processing, both of which are violated in FGS. Luckily in FGS, often a co-located reference video is also captured which we use to simulate the LLL and assist in the denoising processes. In this work, we propose an accurate noise simulation pipeline that includes LLL and propose three baseline deep learning based algorithms for FGS video denoising.
Via
Nov 14, 2024
Abstract:Recent advancements utilizing large-scale video data for learning video generation models demonstrate significant potential in understanding complex physical dynamics. It suggests the feasibility of leveraging diverse robot trajectory data to develop a unified, dynamics-aware model to enhance robot manipulation. However, given the relatively small amount of available robot data, directly fitting data without considering the relationship between visual observations and actions could lead to suboptimal data utilization. To this end, we propose VidMan (Video Diffusion for Robot Manipulation), a novel framework that employs a two-stage training mechanism inspired by dual-process theory from neuroscience to enhance stability and improve data utilization efficiency. Specifically, in the first stage, VidMan is pre-trained on the Open X-Embodiment dataset (OXE) for predicting future visual trajectories in a video denoising diffusion manner, enabling the model to develop a long horizontal awareness of the environment's dynamics. In the second stage, a flexible yet effective layer-wise self-attention adapter is introduced to transform VidMan into an efficient inverse dynamics model that predicts action modulated by the implicit dynamics knowledge via parameter sharing. Our VidMan framework outperforms state-of-the-art baseline model GR-1 on the CALVIN benchmark, achieving a 11.7% relative improvement, and demonstrates over 9% precision gains on the OXE small-scale dataset. These results provide compelling evidence that world models can significantly enhance the precision of robot action prediction. Codes and models will be public.
* Accepted to NeurIPS 2024
Via
Nov 08, 2024
Abstract:With the rise of marine exploration, underwater imaging has gained significant attention as a research topic. Underwater video enhancement has become crucial for real-time computer vision tasks in marine exploration. However, most existing methods focus on enhancing individual frames and neglect video temporal dynamics, leading to visually poor enhancements. Furthermore, the lack of ground-truth references limits the use of abundant available underwater video data in many applications. To address these issues, we propose a two-stage framework for enhancing underwater videos. The first stage uses a denoising diffusion probabilistic model to learn a generative prior from unlabeled data, capturing robust and descriptive feature representations. In the second stage, this prior is incorporated into a physics-based image formulation for spatial enhancement, while also enforcing temporal consistency between video frames. Our method enables real-time and computationally-efficient processing of high-resolution underwater videos at lower resolutions, and offers efficient enhancement in the presence of diverse water-types. Extensive experiments on four datasets show that our approach generalizes well and outperforms existing enhancement methods. Our code is available at github.com/suhas-srinath/undive.
* Accepted to IEEE/CVF WACV 2025
Via