Abstract:Accurate tracking of tissues and instruments in videos is crucial for Robotic-Assisted Minimally Invasive Surgery (RAMIS), as it enables the robot to comprehend the surgical scene with precise locations and interactions of tissues and tools. Traditional keypoint-based sparse tracking is limited by featured points, while flow-based dense two-view matching suffers from long-term drifts. Recently, the Tracking Any Point (TAP) algorithm was proposed to overcome these limitations and achieve dense accurate long-term tracking. However, its efficacy in surgical scenarios remains untested, largely due to the lack of a comprehensive surgical tracking dataset for evaluation. To address this gap, we introduce a new annotated surgical tracking dataset for benchmarking tracking methods for surgical scenarios, comprising real-world surgical videos with complex tissue and instrument motions. We extensively evaluate state-of-the-art (SOTA) TAP-based algorithms on this dataset and reveal their limitations in challenging surgical scenarios, including fast instrument motion, severe occlusions, and motion blur, etc. Furthermore, we propose a new tracking method, namely SurgMotion, to solve the challenges and further improve the tracking performance. Our proposed method outperforms most TAP-based algorithms in surgical instruments tracking, and especially demonstrates significant improvements over baselines in challenging medical videos.
Abstract:The recent breakthroughs in large language models (LLMs) are positioned to transition many areas of software. The technologies of interacting with data particularly have an important entanglement with LLMs as efficient and intuitive data interactions are paramount. In this paper, we present DB-GPT, a revolutionary and product-ready Python library that integrates LLMs into traditional data interaction tasks to enhance user experience and accessibility. DB-GPT is designed to understand data interaction tasks described by natural language and provide context-aware responses powered by LLMs, making it an indispensable tool for users ranging from novice to expert. Its system design supports deployment across local, distributed, and cloud environments. Beyond handling basic data interaction tasks like Text-to-SQL with LLMs, it can handle complex tasks like generative data analysis through a Multi-Agents framework and the Agentic Workflow Expression Language (AWEL). The Service-oriented Multi-model Management Framework (SMMF) ensures data privacy and security, enabling users to employ DB-GPT with private LLMs. Additionally, DB-GPT offers a series of product-ready features designed to enable users to integrate DB-GPT within their product environments easily. The code of DB-GPT is available at Github(https://github.com/eosphoros-ai/DB-GPT) which already has over 10.7k stars. Please install DB-GPT for your own usage with the instructions(https://github.com/eosphoros-ai/DB-GPT#install) and watch a 5-minute introduction video on Youtube(https://youtu.be/n_8RI1ENyl4) to further investigate DB-GPT.
Abstract:Recent methods in text-to-3D leverage powerful pretrained diffusion models to optimize NeRF. Notably, these methods are able to produce high-quality 3D scenes without training on 3D data. Due to the open-ended nature of the task, most studies evaluate their results with subjective case studies and user experiments, thereby presenting a challenge in quantitatively addressing the question: How has current progress in Text-to-3D gone so far? In this paper, we introduce T$^3$Bench, the first comprehensive text-to-3D benchmark containing diverse text prompts of three increasing complexity levels that are specially designed for 3D generation. To assess both the subjective quality and the text alignment, we propose two automatic metrics based on multi-view images produced by the 3D contents. The quality metric combines multi-view text-image scores and regional convolution to detect quality and view inconsistency. The alignment metric uses multi-view captioning and Large Language Model (LLM) evaluation to measure text-3D consistency. Both metrics closely correlate with different dimensions of human judgments, providing a paradigm for efficiently evaluating text-to-3D models. The benchmarking results, shown in Fig. 1, reveal performance differences among six prevalent text-to-3D methods. Our analysis further highlights the common struggles for current methods on generating surroundings and multi-object scenes, as well as the bottleneck of leveraging 2D guidance for 3D generation. Our project page is available at: https://t3bench.com.
Abstract:This paper presents a flexible representation of neural radiance fields based on multi-plane images (MPI), for high-quality view synthesis of complex scenes. MPI with Normalized Device Coordinate (NDC) parameterization is widely used in NeRF learning for its simple definition, easy calculation, and powerful ability to represent unbounded scenes. However, existing NeRF works that adopt MPI representation for novel view synthesis can only handle simple forward-facing unbounded scenes, where the input cameras are all observing in similar directions with small relative translations. Hence, extending these MPI-based methods to more complex scenes like large-range or even 360-degree scenes is very challenging. In this paper, we explore the potential of MPI and show that MPI can synthesize high-quality novel views of complex scenes with diverse camera distributions and view directions, which are not only limited to simple forward-facing scenes. Our key idea is to encode the neural radiance field with multiple MPIs facing different directions and blend them with an adaptive blending operation. For each region of the scene, the blending operation gives larger blending weights to those advantaged MPIs with stronger local representation abilities while giving lower weights to those with weaker representation abilities. Such blending operation automatically modulates the multiple MPIs to appropriately represent the diverse local density and color information. Experiments on the KITTI dataset and ScanNet dataset demonstrate that our proposed MMPI synthesizes high-quality images from diverse camera pose distributions and is fast to train, outperforming the previous fast-training NeRF methods for novel view synthesis. Moreover, we show that MMPI can encode extremely long trajectories and produce novel view renderings, demonstrating its potential in applications like autonomous driving.
Abstract:The reconstruction of indoor scenes from multi-view RGB images is challenging due to the coexistence of flat and texture-less regions alongside delicate and fine-grained regions. Recent methods leverage neural radiance fields aided by predicted surface normal priors to recover the scene geometry. These methods excel in producing complete and smooth results for floor and wall areas. However, they struggle to capture complex surfaces with high-frequency structures due to the inadequate neural representation and the inaccurately predicted normal priors. To improve the capacity of the implicit representation, we propose a hybrid architecture to represent low-frequency and high-frequency regions separately. To enhance the normal priors, we introduce a simple yet effective image sharpening and denoising technique, coupled with a network that estimates the pixel-wise uncertainty of the predicted surface normal vectors. Identifying such uncertainty can prevent our model from being misled by unreliable surface normal supervisions that hinder the accurate reconstruction of intricate geometries. Experiments on the benchmark datasets show that our method significantly outperforms existing methods in terms of reconstruction quality.
Abstract:Occlusion is a common issue in 3D reconstruction from RGB-D videos, often blocking the complete reconstruction of objects and presenting an ongoing problem. In this paper, we propose a novel framework, empowered by a 2D diffusion-based in-painting model, to reconstruct complete surfaces for the hidden parts of objects. Specifically, we utilize a pre-trained diffusion model to fill in the hidden areas of 2D images. Then we use these in-painted images to optimize a neural implicit surface representation for each instance for 3D reconstruction. Since creating the in-painting masks needed for this process is tricky, we adopt a human-in-the-loop strategy that involves very little human engagement to generate high-quality masks. Moreover, some parts of objects can be totally hidden because the videos are usually shot from limited perspectives. To ensure recovering these invisible areas, we develop a cascaded network architecture for predicting signed distance field, making use of different frequency bands of positional encoding and maintaining overall smoothness. Besides the commonly used rendering loss, Eikonal loss, and silhouette loss, we adopt a CLIP-based semantic consistency loss to guide the surface from unseen camera angles. Experiments on ScanNet scenes show that our proposed framework achieves state-of-the-art accuracy and completeness in object-level reconstruction from scene-level RGB-D videos.
Abstract:Estimating the pose of a moving camera from monocular video is a challenging problem, especially due to the presence of moving objects in dynamic environments, where the performance of existing camera pose estimation methods are susceptible to pixels that are not geometrically consistent. To tackle this challenge, we present a robust dense indirect structure-from-motion method for videos that is based on dense correspondence initialized from pairwise optical flow. Our key idea is to optimize long-range video correspondence as dense point trajectories and use it to learn robust estimation of motion segmentation. A novel neural network architecture is proposed for processing irregular point trajectory data. Camera poses are then estimated and optimized with global bundle adjustment over the portion of long-range point trajectories that are classified as static. Experiments on MPI Sintel dataset show that our system produces significantly more accurate camera trajectories compared to existing state-of-the-art methods. In addition, our method is able to retain reasonable accuracy of camera poses on fully static scenes, which consistently outperforms strong state-of-the-art dense correspondence based methods with end-to-end deep learning, demonstrating the potential of dense indirect methods based on optical flow and point trajectories. As the point trajectory representation is general, we further present results and comparisons on in-the-wild monocular videos with complex motion of dynamic objects. Code is available at https://github.com/bytedance/particle-sfm.
Abstract:In this paper, we introduce a deep multi-view stereo (MVS) system that jointly predicts depths, surface normals and per-view confidence maps. The key to our approach is a novel solver that iteratively solves for per-view depth map and normal map by optimizing an energy potential based on the locally planar assumption. Specifically, the algorithm updates depth map by propagating from neighboring pixels with slanted planes, and updates normal map with local probabilistic plane fitting. Both two steps are monitored by a customized confidence map. This solver is not only effective as a post-processing tool for plane-based depth refinement and completion, but also differentiable such that it can be efficiently integrated into deep learning pipelines. Our multi-view stereo system employs multiple optimization steps of the solver over the initial prediction of depths and surface normals. The whole system can be trained end-to-end, decoupling the challenging problem of matching pixels within poorly textured regions from the cost-volume based neural network. Experimental results on ScanNet and RGB-D Scenes V2 demonstrate state-of-the-art performance of the proposed deep MVS system on multi-view depth estimation, with our proposed solver consistently improving the depth quality over both conventional and deep learning based MVS pipelines. Code is available at https://github.com/thuzhaowang/idn-solver.
Abstract:In this work, we present a new multi-view depth estimation method that utilizes both conventional SfM reconstruction and learning-based priors over the recently proposed neural radiance fields (NeRF). Unlike existing neural network based optimization method that relies on estimated correspondences, our method directly optimizes over implicit volumes, eliminating the challenging step of matching pixels in indoor scenes. The key to our approach is to utilize the learning-based priors to guide the optimization process of NeRF. Our system firstly adapts a monocular depth network over the target scene by finetuning on its sparse SfM reconstruction. Then, we show that the shape-radiance ambiguity of NeRF still exists in indoor environments and propose to address the issue by employing the adapted depth priors to monitor the sampling process of volume rendering. Finally, a per-pixel confidence map acquired by error computation on the rendered image can be used to further improve the depth quality. Experiments show that our proposed framework significantly outperforms state-of-the-art methods on indoor scenes, with surprising findings presented on the effectiveness of correspondence-based optimization and NeRF-based optimization over the adapted depth priors. In addition, we show that the guided optimization scheme does not sacrifice the original synthesis capability of neural radiance fields, improving the rendering quality on both seen and novel views. Code is available at https://github.com/weiyithu/NerfingMVS.
Abstract:In this work, we tackle the essential problem of scale inconsistency for self-supervised joint depth-pose learning. Most existing methods assume that a consistent scale of depth and pose can be learned across all input samples, which makes the learning problem harder, resulting in degraded performance and limited generalization in indoor environments and long-sequence visual odometry application. To address this issue, we propose a novel system that explicitly disentangles scale from the network estimation. Instead of relying on PoseNet architecture, our method recovers relative pose by directly solving fundamental matrix from dense optical flow correspondence and makes use of a two-view triangulation module to recover an up-to-scale 3D structure. Then, we align the scale of the depth prediction with the triangulated point cloud and use the transformed depth map for depth error computation and dense reprojection check. Our whole system can be jointly trained end-to-end. Extensive experiments show that our system not only reaches state-of-the-art performance on KITTI depth and flow estimation, but also significantly improves the generalization ability of existing self-supervised depth-pose learning methods under a variety of challenging scenarios, and achieves state-of-the-art results among self-supervised learning-based methods on KITTI Odometry and NYUv2 dataset. Furthermore, we present some interesting findings on the limitation of PoseNet-based relative pose estimation methods in terms of generalization ability. Code is available at https://github.com/B1ueber2y/TrianFlow.