Abstract:Existing retrieval-based reasoning approaches for large language models (LLMs) heavily rely on the density and quality of the non-parametric knowledge source to provide domain knowledge and explicit reasoning chain. However, inclusive knowledge sources are expensive and sometimes infeasible to build for scientific or corner domains. To tackle the challenges, we introduce Graph Inspired Veracity Extrapolation (GIVE), a novel reasoning framework that integrates the parametric and non-parametric memories to enhance both knowledge retrieval and faithful reasoning processes on very sparse knowledge graphs. By leveraging the external structured knowledge to inspire LLM to model the interconnections among relevant concepts, our method facilitates a more logical and step-wise reasoning approach akin to experts' problem-solving, rather than gold answer retrieval. Specifically, the framework prompts LLMs to decompose the query into crucial concepts and attributes, construct entity groups with relevant entities, and build an augmented reasoning chain by probing potential relationships among node pairs across these entity groups. Our method incorporates both factual and extrapolated linkages to enable comprehensive understanding and response generation. Extensive experiments on reasoning-intense benchmarks on biomedical and commonsense QA demonstrate the effectiveness of our proposed method. Specifically, GIVE enables GPT3.5-turbo to outperform advanced models like GPT4 without any additional training cost, thereby underscoring the efficacy of integrating structured information and internal reasoning ability of LLMs for tackling specialized tasks with limited external resources.
Abstract:Network alignment is the task of establishing one-to-one correspondences between the nodes of different graphs and finds a plethora of applications in high-impact domains. However, this task is known to be NP-hard in its general form, and existing algorithms do not scale up as the size of the graphs increases. To tackle both challenges we propose a novel generalized graph autoencoder architecture, designed to extract powerful and robust node embeddings, that are tailored to the alignment task. We prove that the generated embeddings are associated with the eigenvalues and eigenvectors of the graphs and can achieve more accurate alignment compared to classical spectral methods. Our proposed framework also leverages transfer learning and data augmentation to achieve efficient network alignment at a very large scale without retraining. Extensive experiments on both network and sub-network alignment with real-world graphs provide corroborating evidence supporting the effectiveness and scalability of the proposed approach.
Abstract:COVID-19 pandemic and social distancing urge a reliable human face recognition system in different abnormal situations. However, there is no research which studies the influence of glass factor in facial recognition system. This paper provides a comprehensive review of glass factor. The study contains two steps: data collection and accuracy test. Data collection includes collecting human face images through different situations, such as clear glasses, glass with water and glass with mist. Based on the collected data, an existing state-of-the-art face detection and recognition system built upon MTCNN and Inception V1 deep nets is tested for further analysis. Experimental data supports that 1) the system is robust for classification when comparing real-time images and 2) it fails at determining if two images are of same person by comparing real-time disturbed image with the frontal ones.