Recommendation


Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.

Small Batch Size Training for Language Models: When Vanilla SGD Works, and Why Gradient Accumulation Is Wasteful

Add code
Jul 09, 2025
Viaarxiv icon

Boosting Parameter Efficiency in LLM-Based Recommendation through Sophisticated Pruning

Add code
Jul 09, 2025
Viaarxiv icon

Investigating the Robustness of Retrieval-Augmented Generation at the Query Level

Add code
Jul 09, 2025
Viaarxiv icon

SCoRE: Streamlined Corpus-based Relation Extraction using Multi-Label Contrastive Learning and Bayesian kNN

Add code
Jul 09, 2025
Viaarxiv icon

CDC: Causal Domain Clustering for Multi-Domain Recommendation

Add code
Jul 09, 2025
Viaarxiv icon

Expediting data extraction using a large language model (LLM) and scoping review protocol: a methodological study within a complex scoping review

Add code
Jul 09, 2025
Viaarxiv icon

Impacts of Mainstream-Driven Algorithms on Recommendations for Children Across Domains: A Reproducibility Study

Add code
Jul 09, 2025
Viaarxiv icon

GR-LLMs: Recent Advances in Generative Recommendation Based on Large Language Models

Add code
Jul 09, 2025
Viaarxiv icon

USD: A User-Intent-Driven Sampling and Dual-Debiasing Framework for Large-Scale Homepage Recommendations

Add code
Jul 09, 2025
Viaarxiv icon

A Systematic Analysis of Hybrid Linear Attention

Add code
Jul 08, 2025
Viaarxiv icon