What is Recommendation? Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
Papers and Code
Apr 22, 2025
Abstract:With the exponential growth of Internet of Things (IoT) devices, edge computing (EC) is gradually playing an important role in providing cost-effective services. However, existing approaches struggle to perform well in graph-structured scenarios where user data is correlated, such as traffic flow prediction and social relationship recommender systems. In particular, graph neural network (GNN)-based approaches lead to expensive server communication cost. To address this problem, we propose GraphEdge, an efficient GNN-based EC architecture. It considers the EC system of GNN tasks, where there are associations between users and it needs to take into account the task data of its neighbors when processing the tasks of a user. Specifically, the architecture first perceives the user topology and represents their data associations as a graph layout at each time step. Then the graph layout is optimized by calling our proposed hierarchical traversal graph cut algorithm (HiCut), which cuts the graph layout into multiple weakly associated subgraphs based on the aggregation characteristics of GNN, and the communication cost between different subgraphs during GNN inference is minimized. Finally, based on the optimized graph layout, our proposed deep reinforcement learning (DRL) based graph offloading algorithm (DRLGO) is executed to obtain the optimal offloading strategy for the tasks of users, the offloading strategy is subgraph-based, it tries to offload user tasks in a subgraph to the same edge server as possible while minimizing the task processing time and energy consumption of the EC system. Experimental results show the good effectiveness and dynamic adaptation of our proposed architecture and it also performs well even in dynamic scenarios.
* 17 pages,12 figures
Via

Apr 22, 2025
Abstract:Models play a critical role in managing the vast amounts of data and increasing complexity found in the IoT, IIoT, and IoP domains. The Digital Shadow Reference Model, which serves as a foundational metadata schema for linking data and metadata in these environments, is an example of such a model. Ensuring FAIRness (adherence to the FAIR Principles) is critical because it improves data findability, accessibility, interoperability, and reusability, facilitating efficient data management and integration across systems. This paper presents an evaluation of the FAIRness of the Digital Shadow Reference Model using a structured evaluation framework based on the FAIR Data Principles. Using the concept of FAIR Implementation Profiles (FIPs), supplemented by a mini-questionnaire, we systematically evaluate the model's adherence to these principles. Our analysis identifies key strengths, including the model's metadata schema that supports rich descriptions and authentication techniques, and highlights areas for improvement, such as the need for globally unique identifiers and consequent support for different Web standards. The results provide actionable insights for improving the FAIRness of the model and promoting better data management and reuse. This research contributes to the field by providing a detailed assessment of the Digital Shadow Reference Model and recommending next steps to improve its FAIRness and usability.
* 5 pages (2-column IEEE), 2 tables, accepted and to be published in
2025 IEEE 8th International Conference on Industrial Cyber-Physical Systems
(ICPS) (see https://ieeexplore.ieee.org/xpl/conhome/1826244/all-proceedings)
Via

Apr 22, 2025
Abstract:The current study describes a cost-effective method for adapting large language models (LLMs) for academic advising with study-abroad contexts in mind and for application in low-resource methods for acculturation. With the Mistral-7B-Instruct model applied with a Low-Rank Adaptation (LoRA) method and a 4-bit quantization method, the model underwent training in two distinct stages related to this study's purpose to enhance domain specificity while maintaining computational efficiency. In Phase 1, the model was conditioned with a synthetic dataset via the Gemini Pro API, and in Phase 2, it was trained with manually curated datasets from the StudyAbroadGPT project to achieve enhanced, contextualized responses. Technical innovations entailed memory-efficient quantization, parameter-efficient adaptation, and continuous training analytics via Weights & Biases. After training, this study demonstrated a reduction in training loss by 52.7%, 92% accuracy in domain-specific recommendations, achieved 95% markdown-based formatting support, and a median run-rate of 100 samples per second on off-the-shelf GPU equipment. These findings support the effective application of instruction-tuned LLMs within educational advisers, especially in low-resource institutional scenarios. Limitations included decreased generalizability and the application of a synthetically generated dataset, but this framework is scalable for adding new multilingual-augmented and real-time academic advising processes. Future directions may include plans for the integration of retrieval-augmented generation, applying dynamic quantization routines, and connecting to real-time academic databases to increase adaptability and accuracy.
* 18 pages, 6 figures (3 graphs + 3 flowchart/architecture diagrams),
submitted as a preprint for review consideration in AI for Education or
Machine Learning applications in low-resource settings. Includes detailed
experiments with LoRA and quantization methods for efficient LLM fine-tuning
Via

Apr 22, 2025
Abstract:Reranking models solve the final recommendation lists that best fulfill users' demands. While existing solutions focus on finding parametric models that approximate optimal policies, recent approaches find that it is better to generate multiple lists to compete for a ``pass'' ticket from an evaluator, where the evaluator serves as the supervisor who accurately estimates the performance of the candidate lists. In this work, we show that we can achieve a more efficient and effective list proposal with a multi-generator framework and provide empirical evidence on two public datasets and online A/B tests. More importantly, we verify that the effectiveness of a generator is closely related to how much it complements the views of other generators with sufficiently different rerankings, which derives the metric of list comprehensiveness. With this intuition, we design an automatic complementary generator-finding framework that learns a policy that simultaneously aligns the users' preferences and maximizes the list comprehensiveness metric. The experimental results indicate that the proposed framework can further improve the multi-generator reranking performance.
* Proceedings of the 48th International ACM SIGIR, 2025
* 11 pages, 6 figures, 9 tables
Via

Apr 22, 2025
Abstract:Contrastive learning has proven effective in training sequential recommendation models by incorporating self-supervised signals from augmented views. Most existing methods generate multiple views from the same interaction sequence through stochastic data augmentation, aiming to align their representations in the embedding space. However, users typically have specific intents when purchasing items (e.g., buying clothes as gifts or cosmetics for beauty). Random data augmentation used in existing methods may introduce noise, disrupting the latent intent information implicit in the original interaction sequence. Moreover, using noisy augmented sequences in contrastive learning may mislead the model to focus on irrelevant features, distorting the embedding space and failing to capture users' true behavior patterns and intents. To address these issues, we propose Intent-aware Diffusion with contrastive learning for sequential Recommendation (InDiRec). The core idea is to generate item sequences aligned with users' purchasing intents, thus providing more reliable augmented views for contrastive learning. Specifically, InDiRec first performs intent clustering on sequence representations using K-means to build intent-guided signals. Next, it retrieves the intent representation of the target interaction sequence to guide a conditional diffusion model, generating positive views that share the same underlying intent. Finally, contrastive learning is applied to maximize representation consistency between these intent-aligned views and the original sequence. Extensive experiments on five public datasets demonstrate that InDiRec achieves superior performance compared to existing baselines, learning more robust representations even under noisy and sparse data conditions.
* Accepted at SIGIR 2025. 10 pages, 6 figures, 3 tables
Via

Apr 22, 2025
Abstract:Standardized performance evaluation of fluorescence imaging systems remains a critical unmet need in the field of fluorescence-guided surgery (FGS). While the American Association of Physicists in Medicine (AAPM) TG311 report and recent FDA draft guidance provide recommended metrics for system characterization, practical tools for extracting these metrics remain limited, inconsistent, and often inaccessible. We present QUEL-QAL, an open-source Python library designed to streamline and standardize the quantitative analysis of fluorescence images using solid reference targets. The library provides a modular, reproducible workflow that includes region of interest (ROI) detection, statistical analysis, and visualization capabilities. QUEL-QAL supports key metrics such as response linearity, limit of detection, depth sensitivity, and spatial resolution, in alignment with regulatory and academic guidance. Built on widely adopted Python packages, the library is designed to be extensible, enabling users to adapt it to novel target designs and analysis protocols. By promoting transparency, reproducibility, and regulatory alignment, QUEL-QAL offers a foundational tool to support standardized benchmarking and accelerate the development and evaluation of fluorescence imaging systems.
* 12 pages, 1 table, 4 figures. Code available:
https://github.com/QUEL-Imaging/quel-qal), PyPi: quel-qal
Via

Apr 21, 2025
Abstract:Conversational recommender systems (CRS) typically require extensive domain-specific conversational datasets, yet high costs, privacy concerns, and data-collection challenges severely limit their availability. Although Large Language Models (LLMs) demonstrate strong zero-shot recommendation capabilities, practical applications often favor smaller, internally managed recommender models due to scalability, interpretability, and data privacy constraints, especially in sensitive or rapidly evolving domains. However, training these smaller models effectively still demands substantial domain-specific conversational data, which remains challenging to obtain. To address these limitations, we propose an active data augmentation framework that synthesizes conversational training data by leveraging black-box LLMs guided by active learning techniques. Specifically, our method utilizes publicly available non-conversational domain data, including item metadata, user reviews, and collaborative signals, as seed inputs. By employing active learning strategies to select the most informative seed samples, our approach efficiently guides LLMs to generate synthetic, semantically coherent conversational interactions tailored explicitly to the target domain. Extensive experiments validate that conversational data generated by our proposed framework significantly improves the performance of LLM-based CRS models, effectively addressing the challenges of building CRS in no- or low-resource scenarios.
* 11 pages, 2 figures
Via

Apr 21, 2025
Abstract:Cross-Domain Sequential Recommendation (CDSR) predicts user behavior by leveraging historical interactions across multiple domains, focusing on modeling cross-domain preferences through intra- and inter-sequence item relationships. Inspired by human cognitive processes, we propose Hierarchical Attention Fusion of Visual and Textual Representations (HAF-VT), a novel approach integrating visual and textual data to enhance cognitive modeling. Using the frozen CLIP model, we generate image and text embeddings, enriching item representations with multimodal data. A hierarchical attention mechanism jointly learns single-domain and cross-domain preferences, mimicking human information integration. Evaluated on four e-commerce datasets, HAF-VT outperforms existing methods in capturing cross-domain user interests, bridging cognitive principles with computational models and highlighting the role of multimodal data in sequential decision-making.
* Accepted at CogSCI 2025
Via

Apr 21, 2025
Abstract:Deep learning algorithms have significantly reduced the computational time and improved the spatial resolution of particle image velocimetry~(PIV). However, the models trained on synthetic datasets might have a degraded performance on practical particle images due to domain gaps. As a result, special residual patterns are often observed for the vector fields of deep learning-based estimators. To reduce the special noise step-by-step, we employ a denoising diffusion model~(FlowDiffuser) for PIV analysis. And the data-hungry iterative denoising diffusion model is trained via a transfer learning strategy, resulting in our PIV-FlowDiffuser method. Specifically, (1) pre-training a FlowDiffuser model with multiple optical flow datasets of the computer vision community, such as Sintel, KITTI, etc; (2) fine-tuning the pre-trained model on synthetic PIV datasets. Note that the PIV images are upsampled by a factor of two to resolve the small-scale turbulent flow structures. The visualized results indicate that our PIV-FlowDiffuser effectively suppresses the noise patterns. Therefore, the denoising diffusion model reduces the average end-point error~($AEE$) by 59.4% over RAFT256-PIV baseline on the classic Cai's dataset. Besides, PIV-FlowDiffuser exhibits enhanced generalization performance on unseen particle images due to transfer learning. Overall, this study highlights the transfer-learning-based denoising diffusion models for PIV. And a detailed implementation is recommended for interested readers in the repository https://github.com/Zhu-Qianyu/PIV-FlowDiffuser.
Via

Apr 21, 2025
Abstract:Exponentially growing short video platforms (SVPs) face significant challenges in moderating content detrimental to users' mental health, particularly for minors. The dissemination of such content on SVPs can lead to catastrophic societal consequences. Although substantial efforts have been dedicated to moderating such content, existing methods suffer from critical limitations: (1) Manual review is prone to human bias and incurs high operational costs. (2) Automated methods, though efficient, lack nuanced content understanding, resulting in lower accuracy. (3) Industrial moderation regulations struggle to adapt to rapidly evolving trends due to long update cycles. In this paper, we annotate the first SVP content moderation benchmark with authentic user/reviewer feedback to fill the absence of benchmark in this field. Then we evaluate various methods on the benchmark to verify the existence of the aforementioned limitations. We further propose our common-law content moderation framework named KuaiMod to address these challenges. KuaiMod consists of three components: training data construction, offline adaptation, and online deployment & refinement. Leveraging large vision language model (VLM) and Chain-of-Thought (CoT) reasoning, KuaiMod adequately models video toxicity based on sparse user feedback and fosters dynamic moderation policy with rapid update speed and high accuracy. Offline experiments and large-scale online A/B test demonstrates the superiority of KuaiMod: KuaiMod achieves the best moderation performance on our benchmark. The deployment of KuaiMod reduces the user reporting rate by 20% and its application in video recommendation increases both Daily Active User (DAU) and APP Usage Time (AUT) on several Kuaishou scenarios. We have open-sourced our benchmark at https://kuaimod.github.io.
* 20 pages, 6 figures
Via
