What is Recommendation? Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
Papers and Code
Nov 15, 2024
Abstract:This white paper is the output of a multidisciplinary workshop in Nairobi (Nov 2023). Led by a cross-organisational team including Microsoft Research, NEPAD, Lelapa AI, and University of Oxford. The workshop brought together diverse thought-leaders from various sectors and backgrounds to discuss the implications of Generative AI for the future of work in Africa. Discussions centred around four key themes: Macroeconomic Impacts; Jobs, Skills and Labour Markets; Workers' Perspectives and Africa-Centris AI Platforms. The white paper provides an overview of the current state and trends of generative AI and its applications in different domains, as well as the challenges and risks associated with its adoption and regulation. It represents a diverse set of perspectives to create a set of insights and recommendations which aim to encourage debate and collaborative action towards creating a dignified future of work for everyone across Africa.
Via
Nov 15, 2024
Abstract:In machine learning (ML), the inference phase is the process of applying pre-trained models to new, unseen data with the objective of making predictions. During the inference phase, end-users interact with ML services to gain insights, recommendations, or actions based on the input data. For this reason, serving strategies are nowadays crucial for deploying and managing models in production environments effectively. These strategies ensure that models are available, scalable, reliable, and performant for real-world applications, such as time series forecasting, image classification, natural language processing, and so on. In this paper, we evaluate the performances of five widely-used model serving frameworks (TensorFlow Serving, TorchServe, MLServer, MLflow, and BentoML) under four different scenarios (malware detection, cryptocoin prices forecasting, image classification, and sentiment analysis). We demonstrate that TensorFlow Serving is able to outperform all the other frameworks in serving deep learning (DL) models. Moreover, we show that DL-specific frameworks (TensorFlow Serving and TorchServe) display significantly lower latencies than the three general-purpose ML frameworks (BentoML, MLFlow, and MLServer).
* 2024 IEEE International Conference on Cloud Engineering (IC2E)
Via
Nov 15, 2024
Abstract:Click-through rate (CTR) prediction, which predicts the probability of a user clicking an ad, is a fundamental task in recommender systems. The emergence of heterogeneous information, such as user profile and behavior sequences, depicts user interests from different aspects. A mutually beneficial integration of heterogeneous information is the cornerstone towards the success of CTR prediction. However, most of the existing methods suffer from two fundamental limitations, including (1) insufficient inter-mode interaction due to the unidirectional information flow between modes, and (2) aggressive information aggregation caused by early summarization, resulting in excessive information loss. To address the above limitations, we propose a novel module named InterFormer to learn heterogeneous information interaction in an interleaving style. To achieve better interaction learning, InterFormer enables bidirectional information flow for mutually beneficial learning across different modes. To avoid aggressive information aggregation, we retain complete information in each data mode and use a separate bridging arch for effective information selection and summarization. Our proposed InterFormer achieves state-of-the-art performance on three public datasets and a large-scale industrial dataset.
* 10 pages, 6 figures
Via
Nov 15, 2024
Abstract:In a clinical trial, the random allocation aims to balance prognostic factors between arms, preventing true confounders. However, residual differences due to chance may introduce near-confounders. Adjusting on prognostic factors is therefore recommended, especially because the related increase of the power. In this paper, we hypothesized that G-computation associated with machine learning could be a suitable method for randomized clinical trials even with small sample sizes. It allows for flexible estimation of the outcome model, even when the covariates' relationships with outcomes are complex. Through simulations, penalized regressions (Lasso, Elasticnet) and algorithm-based methods (neural network, support vector machine, super learner) were compared. Penalized regressions reduced variance but may introduce a slight increase in bias. The associated reductions in sample size ranged from 17\% to 54\%. In contrast, algorithm-based methods, while effective for larger and more complex data structures, underestimated the standard deviation, especially with small sample sizes. In conclusion, G-computation with penalized models, particularly Elasticnet with splines when appropriate, represents a relevant approach for increasing the power of RCTs and accounting for potential near-confounders.
Via
Nov 15, 2024
Abstract:In large-scale content recommendation systems, retrieval serves as the initial stage in the pipeline, responsible for selecting thousands of candidate items from billions of options to pass on to ranking modules. Traditionally, the dominant retrieval method has been Embedding-Based Retrieval (EBR) using a Deep Neural Network (DNN) dual-tower structure. However, applying transformer in retrieval tasks has been the focus of recent research, though real-world industrial deployment still presents significant challenges. In this paper, we introduce KuaiFormer, a novel transformer-based retrieval framework deployed in a large-scale content recommendation system. KuaiFormer fundamentally redefines the retrieval process by shifting from conventional score estimation tasks (such as click-through rate estimate) to a transformer-driven Next Action Prediction paradigm. This shift enables more effective real-time interest acquisition and multi-interest extraction, significantly enhancing retrieval performance. KuaiFormer has been successfully integrated into Kuaishou App's short-video recommendation system since May 2024, serving over 400 million daily active users and resulting in a marked increase in average daily usage time of Kuaishou users. We provide insights into both the technical and business aspects of deploying transformer in large-scale recommendation systems, addressing practical challenges encountered during industrial implementation. Our findings offer valuable guidance for engineers and researchers aiming to leverage transformer models to optimize large-scale content recommendation systems.
Via
Nov 14, 2024
Abstract:How objective and unbiased are we while making decisions? This work investigates cognitive bias identification in high-stake decision making process by human experts, questioning its effectiveness in real-world settings, such as candidates assessments for university admission. We begin with a statistical analysis assessing correlations among different decision points among in the current process, which discovers discrepancies that imply cognitive bias and inconsistency in decisions. This motivates our exploration of bias-aware AI-augmented workflow that surpass human judgment. We propose BGM-HAN, an enhanced Hierarchical Attention Network with Byte-Pair Encoding, Gated Residual Connections and Multi-Head Attention. Using it as a backbone model, we further propose a Shortlist-Analyse-Recommend (SAR) agentic workflow, which simulate real-world decision-making. In our experiments, both the proposed model and the agentic workflow significantly improves on both human judgment and alternative models, validated with real-world data.
Via
Nov 14, 2024
Abstract:While deep learning has revolutionized computer-aided drug discovery, the AI community has predominantly focused on model innovation and placed less emphasis on establishing best benchmarking practices. We posit that without a sound model evaluation framework, the AI community's efforts cannot reach their full potential, thereby slowing the progress and transfer of innovation into real-world drug discovery. Thus, in this paper, we seek to establish a new gold standard for small molecule drug discovery benchmarking, WelQrate. Specifically, our contributions are threefold: WelQrate Dataset Collection - we introduce a meticulously curated collection of 9 datasets spanning 5 therapeutic target classes. Our hierarchical curation pipelines, designed by drug discovery experts, go beyond the primary high-throughput screen by leveraging additional confirmatory and counter screens along with rigorous domain-driven preprocessing, such as Pan-Assay Interference Compounds (PAINS) filtering, to ensure the high-quality data in the datasets; WelQrate Evaluation Framework - we propose a standardized model evaluation framework considering high-quality datasets, featurization, 3D conformation generation, evaluation metrics, and data splits, which provides a reliable benchmarking for drug discovery experts conducting real-world virtual screening; Benchmarking - we evaluate model performance through various research questions using the WelQrate dataset collection, exploring the effects of different models, dataset quality, featurization methods, and data splitting strategies on the results. In summary, we recommend adopting our proposed WelQrate as the gold standard in small molecule drug discovery benchmarking. The WelQrate dataset collection, along with the curation codes, and experimental scripts are all publicly available at WelQrate.org.
* * denotes equal contribution
Via
Nov 14, 2024
Abstract:Multi-interest modeling in current recommender systems (RS) is mainly based on user behavioral data, capturing user interest preferences from multiple dimensions. However, since behavioral data is implicit and often highly sparse, it is challenging to understand users' complex and diverse interests. Recent studies have shown that the rich semantic information in the text can effectively supplement the deficiencies of behavioral data. Despite this, it is still difficult for small models to directly extract semantic features associated with users' deep interests. That is, how to effectively align semantics with behavioral information to form a more comprehensive and accurate understanding of user interests has become a critical research problem.To address this, we propose an LLM-assisted explicit and implicit multi-interest learning framework (named EIMF) to model user interests on two levels: behavior and semantics. The framework consists of two parts: Implicit Behavioral Interest Module (IBIM) and Explicit Semantic Interest Module (ESIM). The traditional multi-interest RS model in IBIM can learn users' implicit behavioral interests from interactions with items. In ESIM, we first adopt a clustering algorithm to select typical samples and design a prompting strategy on LLM to obtain explicit semantic interests. Furthermore, in the training phase, the semantic interests of typical samples can enhance the representation learning of behavioral interests based on the multi-task learning on semantic prediction and modality alignment. Therefore, in the inference stage, accurate recommendations can be achieved with only the user's behavioral data. Extensive experiments on real-world datasets demonstrate the effectiveness of the proposed EIMF framework, which effectively and efficiently combines small models with LLM to improve the accuracy of multi-interest modeling.
* 10 pages
Via
Nov 14, 2024
Abstract:Due to the difficulty of acquiring large-scale explicit user feedback, implicit feedback (e.g., clicks or other interactions) is widely applied as an alternative source of data, where user-item interactions can be modeled as a bipartite graph. Due to the noisy and biased nature of implicit real-world user-item interactions, identifying and rectifying noisy interactions are vital to enhance model performance and robustness. Previous works on purifying user-item interactions in collaborative filtering mainly focus on mining the correlation between user/item embeddings and noisy interactions, neglecting the benefit of temporal patterns in determining noisy interactions. Time information, while enhancing the model utility, also bears its natural advantage in helping to determine noisy edges, e.g., if someone usually watches horror movies at night and talk shows in the morning, a record of watching a horror movie in the morning is more likely to be noisy interaction. Armed with this observation, we introduce a simple yet effective mechanism for generating time-aware user/item embeddings and propose two strategies for denoising bipartite temporal graph in recommender systems (DeBaTeR): the first is through reweighting the adjacency matrix (DeBaTeR-A), where a reliability score is defined to reweight the edges through both soft assignment and hard assignment; the second is through reweighting the loss function (DeBaTeR-L), where weights are generated to reweight user-item samples in the losses. Extensive experiments have been conducted to demonstrate the efficacy of our methods and illustrate how time information indeed helps identifying noisy edges.
Via
Nov 14, 2024
Abstract:In this paper, we discuss the need for an integrated software stack that unites artificial intelligence (AI) and modeling and simulation (ModSim) tools to advance scientific discovery. The authors advocate for a unified AI/ModSim software ecosystem that ensures compatibility across a wide range of software on diverse high-performance computing systems, promoting ease of deployment, version management, and binary distribution. Key challenges highlighted include balancing the distinct needs of AI and ModSim, especially in terms of software build practices, dependency management, and compatibility. The document underscores the importance of continuous integration, community-driven stewardship, and collaboration with the Department of Energy (DOE) to develop a portable and cohesive scientific software ecosystem. Recommendations focus on supporting standardized environments through initiatives like the Extreme-scale Scientific Software Stack (E4S) and Spack to foster interdisciplinary innovation and facilitate new scientific advancements.
* 5 pages
Via