Abstract:Molecular Relational Learning (MRL) is a rapidly growing field that focuses on understanding the interaction dynamics between molecules, which is crucial for applications ranging from catalyst engineering to drug discovery. Despite recent progress, earlier MRL approaches are limited to using only the 2D topological structure of molecules, as obtaining the 3D interaction geometry remains prohibitively expensive. This paper introduces a novel 3D geometric pre-training strategy for MRL (3DMRL) that incorporates a 3D virtual interaction environment, overcoming the limitations of costly traditional quantum mechanical calculation methods. With the constructed 3D virtual interaction environment, 3DMRL trains 2D MRL model to learn the overall 3D geometric information of molecular interaction through contrastive learning. Moreover, fine-grained interaction between molecules is learned through force prediction loss, which is crucial in understanding the wide range of molecular interaction processes. Extensive experiments on various tasks using real-world datasets, including out-of-distribution and extrapolation scenarios, demonstrate the effectiveness of 3DMRL, showing up to a 24.93\% improvement in performance across 40 tasks.
Abstract:Recent studies have demonstrated the strong empirical performance of diffusion models on discrete sequences across domains from natural language to biological sequence generation. For example, in the protein inverse folding task, conditional diffusion models have achieved impressive results in generating natural-like sequences that fold back into the original structure. However, practical design tasks often require not only modeling a conditional distribution but also optimizing specific task objectives. For instance, we may prefer protein sequences with high stability. To address this, we consider the scenario where we have pre-trained discrete diffusion models that can generate natural-like sequences, as well as reward models that map sequences to task objectives. We then formulate the reward maximization problem within discrete diffusion models, analogous to reinforcement learning (RL), while minimizing the KL divergence against pretrained diffusion models to preserve naturalness. To solve this RL problem, we propose a novel algorithm, DRAKES, that enables direct backpropagation of rewards through entire trajectories generated by diffusion models, by making the originally non-differentiable trajectories differentiable using the Gumbel-Softmax trick. Our theoretical analysis indicates that our approach can generate sequences that are both natural-like and yield high rewards. While similar tasks have been recently explored in diffusion models for continuous domains, our work addresses unique algorithmic and theoretical challenges specific to discrete diffusion models, which arise from their foundation in continuous-time Markov chains rather than Brownian motion. Finally, we demonstrate the effectiveness of DRAKES in generating DNA and protein sequences that optimize enhancer activity and protein stability, respectively, important tasks for gene therapies and protein-based therapeutics.
Abstract:Graph representation learning, involving both node features and graph structures, is crucial for real-world applications but often encounters pervasive noise. State-of-the-art methods typically address noise by focusing separately on node features with large language models (LLMs) and on graph structures with graph structure learning models (GSLMs). In this paper, we introduce LangGSL, a robust framework that integrates the complementary strengths of pre-trained language models and GSLMs to jointly enhance both node feature and graph structure learning. In LangGSL, we first leverage LLMs to filter noise in the raw data and extract valuable cleaned information as features, enhancing the synergy of downstream models. During the mutual learning phase in LangGSL, the core idea is to leverage the relatively small language model (LM) to process local attributes and generate reliable pseudo-labels and informative node embeddings, which are then integrated into the GSLM's prediction phase. This approach enriches the global context and enhances overall performance. Meanwhile, GSLM refines the evolving graph structure constructed from the LM's output, offering updated labels back to the LM as additional guidance, thus facilitating a more effective mutual learning process. The LM and GSLM work synergistically, complementing each other's strengths and offsetting weaknesses within a variational information-maximizing framework, resulting in enhanced node features and a more robust graph structure. Extensive experiments on diverse graph datasets of varying scales and across different task scenarios demonstrate the scalability and effectiveness of the proposed approach.
Abstract:Graph Neural Networks (GNNs) are vital in data science but are increasingly susceptible to adversarial attacks. To help researchers develop more robust GNN models, it's essential to focus on designing strong attack models as foundational benchmarks and guiding references. Among adversarial attacks, gray-box poisoning attacks are noteworthy due to their effectiveness and fewer constraints. These attacks exploit GNNs' need for retraining on updated data, thereby impacting their performance by perturbing these datasets. However, current research overlooks the real-world scenario of incomplete graphs.To address this gap, we introduce the Robust Incomplete Deep Attack Framework (RIDA). It is the first algorithm for robust gray-box poisoning attacks on incomplete graphs. The approach innovatively aggregates distant vertex information and ensures powerful data utilization.Extensive tests against 9 SOTA baselines on 3 real-world datasets demonstrate RIDA's superiority in handling incompleteness and high attack performance on the incomplete graph.
Abstract:Ultrasound computed tomography (USCT) is a promising technique that achieves superior medical imaging reconstruction resolution by fully leveraging waveform information, outperforming conventional ultrasound methods. Despite its advantages, high-quality USCT reconstruction relies on extensive data acquisition by a large number of transducers, leading to increased costs, computational demands, extended patient scanning times, and manufacturing complexities. To mitigate these issues, we propose a new USCT method called APS-USCT, which facilitates imaging with sparse data, substantially reducing dependence on high-cost dense data acquisition. Our APS-USCT method consists of two primary components: APS-wave and APS-FWI. The APS-wave component, an encoder-decoder system, preprocesses the waveform data, converting sparse data into dense waveforms to augment sample density prior to reconstruction. The APS-FWI component, utilizing the InversionNet, directly reconstructs the speed of sound (SOS) from the ultrasound waveform data. We further improve the model's performance by incorporating Squeeze-and-Excitation (SE) Blocks and source encoding techniques. Testing our method on a breast cancer dataset yielded promising results. It demonstrated outstanding performance with an average Structural Similarity Index (SSIM) of 0.8431. Notably, over 82% of samples achieved an SSIM above 0.8, with nearly 61% exceeding 0.85, highlighting the significant potential of our approach in improving USCT image reconstruction by efficiently utilizing sparse data.
Abstract:Spatial-Temporal Graph (STG) data is characterized as dynamic, heterogenous, and non-stationary, leading to the continuous challenge of spatial-temporal graph learning. In the past few years, various GNN-based methods have been proposed to solely focus on mimicking the relationships among node individuals of the STG network, ignoring the significance of modeling the intrinsic features that exist in STG system over time. In contrast, modern Selective State Space Models (SSSMs) present a new approach which treat STG Network as a system, and meticulously explore the STG system's dynamic state evolution across temporal dimension. In this work, we introduce Spatial-Temporal Graph Mamba (STG-Mamba) as the first exploration of leveraging the powerful selective state space models for STG learning by treating STG Network as a system, and employing the Graph Selective State Space Block (GS3B) to precisely characterize the dynamic evolution of STG networks. STG-Mamba is formulated as an Encoder-Decoder architecture, which takes GS3B as the basic module, for efficient sequential data modeling. Furthermore, to strengthen GNN's ability of modeling STG data under the setting of SSSMs, we propose Kalman Filtering Graph Neural Networks (KFGN) for adaptive graph structure upgrading. KFGN smoothly fits in the context of selective state space evolution, and at the same time keeps linear complexity. Extensive empirical studies are conducted on three benchmark STG forecasting datasets, demonstrating the performance superiority and computational efficiency of STG-Mamba. It not only surpasses existing state-of-the-art methods in terms of STG forecasting performance, but also effectively alleviate the computational bottleneck of large-scale graph networks in reducing the computational cost of FLOPs and test inference time.
Abstract:Deep generative models (DGMs) have been widely developed for graph data. However, much less investigation has been carried out on understanding the latent space of such pretrained graph DGMs. These understandings possess the potential to provide constructive guidelines for crucial tasks, such as graph controllable generation. Thus in this work, we are interested in studying this problem and propose GraphCG, a method for the unsupervised discovery of steerable factors in the latent space of pretrained graph DGMs. We first examine the representation space of three pretrained graph DGMs with six disentanglement metrics, and we observe that the pretrained representation space is entangled. Motivated by this observation, GraphCG learns the steerable factors via maximizing the mutual information between semantic-rich directions, where the controlled graph moving along the same direction will share the same steerable factors. We quantitatively verify that GraphCG outperforms four competitive baselines on two graph DGMs pretrained on two molecule datasets. Additionally, we qualitatively illustrate seven steerable factors learned by GraphCG on five pretrained DGMs over five graph datasets, including two for molecules and three for point clouds.
Abstract:Full-waveform inversion (FWI) plays a vital role in geoscience to explore the subsurface. It utilizes the seismic wave to image the subsurface velocity map. As the machine learning (ML) technique evolves, the data-driven approaches using ML for FWI tasks have emerged, offering enhanced accuracy and reduced computational cost compared to traditional physics-based methods. However, a common challenge in geoscience, the unprivileged data, severely limits ML effectiveness. The issue becomes even worse during model pruning, a step essential in geoscience due to environmental complexities. To tackle this, we introduce the EdGeo toolkit, which employs a diffusion-based model guided by physics principles to generate high-fidelity velocity maps. The toolkit uses the acoustic wave equation to generate corresponding seismic waveform data, facilitating the fine-tuning of pruned ML models. Our results demonstrate significant improvements in SSIM scores and reduction in both MAE and MSE across various pruning ratios. Notably, the ML model fine-tuned using data generated by EdGeo yields superior quality of velocity maps, especially in representing unprivileged features, outperforming other existing methods.
Abstract:Ultrasound computed tomography (USCT) is an emerging imaging modality that holds great promise for breast imaging. Full-waveform inversion (FWI)-based image reconstruction methods incorporate accurate wave physics to produce high spatial resolution quantitative images of speed of sound or other acoustic properties of the breast tissues from USCT measurement data. However, the high computational cost of FWI reconstruction represents a significant burden for its widespread application in a clinical setting. The research reported here investigates the use of a convolutional neural network (CNN) to learn a mapping from USCT waveform data to speed of sound estimates. The CNN was trained using a supervised approach with a task-informed loss function aiming at preserving features of the image that are relevant to the detection of lesions. A large set of anatomically and physiologically realistic numerical breast phantoms (NBPs) and corresponding simulated USCT measurements was employed during training. Once trained, the CNN can perform real-time FWI image reconstruction from USCT waveform data. The performance of the proposed method was assessed and compared against FWI using a hold-out sample of 41 NBPs and corresponding USCT data. Accuracy was measured using relative mean square error (RMSE), structural self-similarity index measure (SSIM), and lesion detection performance (DICE score). This numerical experiment demonstrates that a supervised learning model can achieve accuracy comparable to FWI in terms of RMSE and SSIM, and better performance in terms of task performance, while significantly reducing computational time.
Abstract:This paper investigates the impact of big data on deep learning models for full waveform inversion (FWI). While it is well known that big data can boost the performance of deep learning models in many tasks, its effectiveness has not been validated for FWI. To address this gap, we present an empirical study that investigates how deep learning models in FWI behave when trained on OpenFWI, a collection of large-scale, multi-structural datasets published recently. Particularly, we train and evaluate the FWI models on a combination of 10 2D subsets in OpenFWI that contain 470K data pairs in total. Our experiments demonstrate that larger datasets lead to better performance and generalization of deep learning models for FWI. We further demonstrate that model capacity needs to scale in accordance with data size for optimal improvement.