Abstract:Few-shot relation extraction with none-of-the-above (FsRE with NOTA) aims at predicting labels in few-shot scenarios with unknown classes. FsRE with NOTA is more challenging than the conventional few-shot relation extraction task, since the boundaries of unknown classes are complex and difficult to learn. Meta-learning based methods, especially prototype-based methods, are the mainstream solutions to this task. They obtain the classification boundary by learning the sample distribution of each class. However, their performance is limited because few-shot overfitting and NOTA boundary confusion lead to misclassification between known and unknown classes. To this end, we propose a novel framework based on Gaussian prototype and adaptive margin named GPAM for FsRE with NOTA, which includes three modules, semi-factual representation, GMM-prototype metric learning and decision boundary learning. The first two modules obtain better representations to solve the few-shot problem through debiased information enhancement and Gaussian space distance measurement. The third module learns more accurate classification boundaries and prototypes through adaptive margin and negative sampling. In the training procedure of GPAM, we use contrastive learning loss to comprehensively consider the effects of range and margin on the classification of known and unknown classes to ensure the model's stability and robustness. Sufficient experiments and ablations on the FewRel dataset show that GPAM surpasses previous prototype methods and achieves state-of-the-art performance.
Abstract:Retrieval-augmented Generation (RAG) has markedly enhanced the capabilities of Large Language Models (LLMs) in tackling knowledge-intensive tasks. The increasing demands of application scenarios have driven the evolution of RAG, leading to the integration of advanced retrievers, LLMs and other complementary technologies, which in turn has amplified the intricacy of RAG systems. However, the rapid advancements are outpacing the foundational RAG paradigm, with many methods struggling to be unified under the process of "retrieve-then-generate". In this context, this paper examines the limitations of the existing RAG paradigm and introduces the modular RAG framework. By decomposing complex RAG systems into independent modules and specialized operators, it facilitates a highly reconfigurable framework. Modular RAG transcends the traditional linear architecture, embracing a more advanced design that integrates routing, scheduling, and fusion mechanisms. Drawing on extensive research, this paper further identifies prevalent RAG patterns-linear, conditional, branching, and looping-and offers a comprehensive analysis of their respective implementation nuances. Modular RAG presents innovative opportunities for the conceptualization and deployment of RAG systems. Finally, the paper explores the potential emergence of new operators and paradigms, establishing a solid theoretical foundation and a practical roadmap for the continued evolution and practical deployment of RAG technologies.
Abstract:The integration of Large Language Models (LLMs) with Knowledge Representation Learning (KRL) signifies a pivotal advancement in the field of artificial intelligence, enhancing the ability to capture and utilize complex knowledge structures. This synergy leverages the advanced linguistic and contextual understanding capabilities of LLMs to improve the accuracy, adaptability, and efficacy of KRL, thereby expanding its applications and potential. Despite the increasing volume of research focused on embedding LLMs within the domain of knowledge representation, a thorough review that examines the fundamental components and processes of these enhanced models is conspicuously absent. Our survey addresses this by categorizing these models based on three distinct Transformer architectures, and by analyzing experimental data from various KRL downstream tasks to evaluate the strengths and weaknesses of each approach. Finally, we identify and explore potential future research directions in this emerging yet underexplored domain, proposing pathways for continued progress.
Abstract:Reinforcement learning (RL) is a powerful approach to enhance task-oriented dialogue (TOD) systems. However, existing RL methods tend to mainly focus on generation tasks, such as dialogue policy learning (DPL) or response generation (RG), while neglecting dialogue state tracking (DST) for understanding. This narrow focus limits the systems to achieve globally optimal performance by overlooking the interdependence between understanding and generation. Additionally, RL methods face challenges with sparse and delayed rewards, which complicates training and optimization. To address these issues, we extend RL into both understanding and generation tasks by introducing step-by-step rewards throughout the token generation. The understanding reward increases as more slots are correctly filled in DST, while the generation reward grows with the accurate inclusion of user requests. Our approach provides a balanced optimization aligned with task completion. Experimental results demonstrate that our approach effectively enhances the performance of TOD systems and achieves new state-of-the-art results on three widely used datasets, including MultiWOZ2.0, MultiWOZ2.1, and In-Car. Our approach also shows superior few-shot ability in low-resource settings compared to current models.
Abstract:Well-designed prompts have demonstrated the potential to guide text-to-image models in generating amazing images. Although existing prompt engineering methods can provide high-level guidance, it is challenging for novice users to achieve the desired results by manually entering prompts due to a discrepancy between novice-user-input prompts and the model-preferred prompts. To bridge the distribution gap between user input behavior and model training datasets, we first construct a novel Coarse-Fine Granularity Prompts dataset (CFP) and propose a novel User-Friendly Fine-Grained Text Generation framework (UF-FGTG) for automated prompt optimization. For CFP, we construct a novel dataset for text-to-image tasks that combines coarse and fine-grained prompts to facilitate the development of automated prompt generation methods. For UF-FGTG, we propose a novel framework that automatically translates user-input prompts into model-preferred prompts. Specifically, we propose a prompt refiner that continually rewrites prompts to empower users to select results that align with their unique needs. Meanwhile, we integrate image-related loss functions from the text-to-image model into the training process of text generation to generate model-preferred prompts. Additionally, we propose an adaptive feature extraction module to ensure diversity in the generated results. Experiments demonstrate that our approach is capable of generating more visually appealing and diverse images than previous state-of-the-art methods, achieving an average improvement of 5% across six quality and aesthetic metrics.
Abstract:Commit messages are natural language descriptions of code changes, which are important for software evolution such as code understanding and maintenance. However, previous methods are trained on the entire dataset without considering the fact that a portion of commit messages adhere to good practice (i.e., good-practice commits), while the rest do not. On the basis of our empirical study, we discover that training on good-practice commits significantly contributes to the commit message generation. Motivated by this finding, we propose a novel knowledge-aware denoising learning method called KADEL. Considering that good-practice commits constitute only a small proportion of the dataset, we align the remaining training samples with these good-practice commits. To achieve this, we propose a model that learns the commit knowledge by training on good-practice commits. This knowledge model enables supplementing more information for training samples that do not conform to good practice. However, since the supplementary information may contain noise or prediction errors, we propose a dynamic denoising training method. This method composes a distribution-aware confidence function and a dynamic distribution list, which enhances the effectiveness of the training process. Experimental results on the whole MCMD dataset demonstrate that our method overall achieves state-of-the-art performance compared with previous methods. Our source code and data are available at https://github.com/DeepSoftwareAnalytics/KADEL
Abstract:Large Language Models (LLMs) demonstrate significant capabilities but face challenges such as hallucination, outdated knowledge, and non-transparent, untraceable reasoning processes. Retrieval-Augmented Generation (RAG) has emerged as a promising solution by incorporating knowledge from external databases. This enhances the accuracy and credibility of the models, particularly for knowledge-intensive tasks, and allows for continuous knowledge updates and integration of domain-specific information. RAG synergistically merges LLMs' intrinsic knowledge with the vast, dynamic repositories of external databases. This comprehensive review paper offers a detailed examination of the progression of RAG paradigms, encompassing the Naive RAG, the Advanced RAG, and the Modular RAG. It meticulously scrutinizes the tripartite foundation of RAG frameworks, which includes the retrieval , the generation and the augmentation techniques. The paper highlights the state-of-the-art technologies embedded in each of these critical components, providing a profound understanding of the advancements in RAG systems. Furthermore, this paper introduces the metrics and benchmarks for assessing RAG models, along with the most up-to-date evaluation framework. In conclusion, the paper delineates prospective avenues for research, including the identification of challenges, the expansion of multi-modalities, and the progression of the RAG infrastructure and its ecosystem.
Abstract:Few-shot learning (FSL) presents immense potential in enhancing model generalization and practicality for medical image classification with limited training data; however, it still faces the challenge of severe overfitting in classifier training due to distribution bias caused by the scarce training samples. To address the issue, we propose MedMFG, a flexible and lightweight plug-and-play method designed to generate sufficient class-distinctive features from limited samples. Specifically, MedMFG first re-represents the limited prototypes to assign higher weights for more important information features. Then, the prototypes are variationally generated into abundant effective features. Finally, the generated features and prototypes are together to train a more generalized classifier. Experiments demonstrate that MedMFG outperforms the previous state-of-the-art methods on cross-domain benchmarks involving the transition from natural images to medical images, as well as medical images with different lesions. Notably, our method achieves over 10% performance improvement compared to several baselines. Fusion experiments further validate the adaptability of MedMFG, as it seamlessly integrates into various backbones and baselines, consistently yielding improvements of over 2.9% across all results.
Abstract:Large language models (LLMs) have demonstrated their significant potential to be applied for addressing various application tasks. However, traditional recommender systems continue to face great challenges such as poor interactivity and explainability, which actually also hinder their broad deployment in real-world systems. To address these limitations, this paper proposes a novel paradigm called Chat-Rec (ChatGPT Augmented Recommender System) that innovatively augments LLMs for building conversational recommender systems by converting user profiles and historical interactions into prompts. Chat-Rec is demonstrated to be effective in learning user preferences and establishing connections between users and products through in-context learning, which also makes the recommendation process more interactive and explainable. What's more, within the Chat-Rec framework, user's preferences can transfer to different products for cross-domain recommendations, and prompt-based injection of information into LLMs can also handle the cold-start scenarios with new items. In our experiments, Chat-Rec effectively improve the results of top-k recommendations and performs better in zero-shot rating prediction task. Chat-Rec offers a novel approach to improving recommender systems and presents new practical scenarios for the implementation of AIGC (AI generated content) in recommender system studies.
Abstract:Layout planning is centrally important in the field of architecture and urban design. Among the various basic units carrying urban functions, residential community plays a vital part for supporting human life. Therefore, the layout planning of residential community has always been of concern, and has attracted particular attention since the advent of deep learning that facilitates the automated layout generation and spatial pattern recognition. However, the research circles generally suffer from the insufficiency of residential community layout benchmark or high-quality datasets, which hampers the future exploration of data-driven methods for residential community layout planning. The lack of datasets is largely due to the difficulties of large-scale real-world residential data acquisition and long-term expert screening. In order to address the issues and advance a benchmark dataset for various intelligent spatial design and analysis applications in the development of smart city, we introduce Residential Community Layout Planning (ReCo) Dataset, which is the first and largest open-source vector dataset related to real-world community to date. ReCo Dataset is presented in multiple data formats with 37,646 residential community layout plans, covering 598,728 residential buildings with height information. ReCo can be conveniently adapted for residential community layout related urban design tasks, e.g., generative layout design, morphological pattern recognition and spatial evaluation. To validate the utility of ReCo in automated residential community layout planning, a Generative Adversarial Network (GAN) based generative model is further applied to the dataset. We expect ReCo Dataset to inspire more creative and practical work in intelligent design and beyond. The ReCo Dataset is published at: https://www.kaggle.com/fdudsde/reco-dataset.