Abstract:We introduce Baichuan Alignment, a detailed analysis of the alignment techniques employed in the Baichuan series of models. This represents the industry's first comprehensive account of alignment methodologies, offering valuable insights for advancing AI research. We investigate the critical components that enhance model performance during the alignment process, including optimization methods, data strategies, capability enhancements, and evaluation processes. The process spans three key stages: Prompt Augmentation System (PAS), Supervised Fine-Tuning (SFT), and Preference Alignment. The problems encountered, the solutions applied, and the improvements made are thoroughly recorded. Through comparisons across well-established benchmarks, we highlight the technological advancements enabled by Baichuan Alignment. Baichuan-Instruct is an internal model, while Qwen2-Nova-72B and Llama3-PBM-Nova-70B are instruct versions of the Qwen2-72B and Llama-3-70B base models, optimized through Baichuan Alignment. Baichuan-Instruct demonstrates significant improvements in core capabilities, with user experience gains ranging from 17% to 28%, and performs exceptionally well on specialized benchmarks. In open-source benchmark evaluations, both Qwen2-Nova-72B and Llama3-PBM-Nova-70B consistently outperform their respective official instruct versions across nearly all datasets. This report aims to clarify the key technologies behind the alignment process, fostering a deeper understanding within the community. Llama3-PBM-Nova-70B model is available at https://huggingface.co/PKU-Baichuan-MLSystemLab/Llama3-PBM-Nova-70B.
Abstract:The illumination of improperly exposed photographs has been widely corrected using deep convolutional neural networks or Transformers. Despite with promising performance, these methods usually suffer from large parameter amounts and heavy computational FLOPs on high-resolution photographs. In this paper, we propose extremely light-weight (with only ~8K parameters) Multi-Scale Linear Transformation (MSLT) networks under the multi-layer perception architecture, which can process 4K-resolution sRGB images at 125 Frame-Per-Second (FPS) by a Titan RTX GPU. Specifically, the proposed MSLT networks first decompose an input image into high and low frequency layers by Laplacian pyramid techniques, and then sequentially correct different layers by pixel-adaptive linear transformation, which is implemented by efficient bilateral grid learning or 1x1 convolutions. Experiments on two benchmark datasets demonstrate the efficiency of our MSLTs against the state-of-the-arts on photo exposure correction. Extensive ablation studies validate the effectiveness of our contributions. The code is available at https://github.com/Zhou-Yijie/MSLTNet.
Abstract:In the era of big data and large models, automatic annotating functions for multi-modal data are of great significance for real-world AI-driven applications, such as autonomous driving and embodied AI. Unlike traditional closed-set annotation, open-vocabulary annotation is essential to achieve human-level cognition capability. However, there are few open-vocabulary auto-labeling systems for multi-modal 3D data. In this paper, we introduce OpenAnnotate3D, an open-source open-vocabulary auto-labeling system that can automatically generate 2D masks, 3D masks, and 3D bounding box annotations for vision and point cloud data. Our system integrates the chain-of-thought capabilities of Large Language Models (LLMs) and the cross-modality capabilities of vision-language models (VLMs). To the best of our knowledge, OpenAnnotate3D is one of the pioneering works for open-vocabulary multi-modal 3D auto-labeling. We conduct comprehensive evaluations on both public and in-house real-world datasets, which demonstrate that the system significantly improves annotation efficiency compared to manual annotation while providing accurate open-vocabulary auto-annotating results.
Abstract:Open-domain Multi-Document Summarization (ODMDS) is a critical tool for condensing vast arrays of documents into coherent, concise summaries. With a more inter-related document set, there does not necessarily exist a correct answer for the retrieval, making it hard to measure the retrieving performance. We propose a rule-based method to process query-based document summarization datasets into ODMDS datasets. Based on this method, we introduce a novel dataset, ODSum, a sophisticated case with its document index interdependent and often interrelated. We tackle ODMDS with the \textit{retrieve-then-summarize} method, and the performance of a list of retrievers and summarizers is investigated. Through extensive experiments, we identify variances in evaluation metrics and provide insights into their reliability. We also found that LLMs suffer great performance loss from retrieving errors. We further experimented methods to improve the performance as well as investigate their robustness against imperfect retrieval. We will release our data and code at https://github.com/yale-nlp/ODSum.
Abstract:Most existing cross-lingual summarization (CLS) work constructs CLS corpora by simply and directly translating pre-annotated summaries from one language to another, which can contain errors from both summarization and translation processes. To address this issue, we propose ConvSumX, a cross-lingual conversation summarization benchmark, through a new annotation schema that explicitly considers source input context. ConvSumX consists of 2 sub-tasks under different real-world scenarios, with each covering 3 language directions. We conduct thorough analysis on ConvSumX and 3 widely-used manually annotated CLS corpora and empirically find that ConvSumX is more faithful towards input text. Additionally, based on the same intuition, we propose a 2-Step method, which takes both conversation and summary as input to simulate human annotation process. Experimental results show that 2-Step method surpasses strong baselines on ConvSumX under both automatic and human evaluation. Analysis shows that both source input text and summary are crucial for modeling cross-lingual summaries.
Abstract:In this paper, we consider a robot navigation problem in environments populated by humans. The goal is to determine collision-free and dynamically feasible trajectories that also maximize human satisfaction. This is because they may drive the robot close to humans that need help with their work or because they may keep the robot away from humans when it can interfere with human sight or work. In practice, human satisfaction is subjective and hard to describe mathematically. As a result, the planning problem we consider in this paper may lack important contextual information. To address this challenge, we propose a semi-supervised Bayesian Optimization (BO) method to design globally optimal robot trajectories using non-contextual bandit human feedback in the form of complaints or satisfaction ratings that express how satisfactory a trajectory is, without revealing the reason. Since trajectory planning is typically a high-dimensional optimization problem in the space of waypoints that define a trajectory, BO may require prohibitively many queries for human feedback to return a good solution. To this end, we use an autoencoder to reduce the high-dimensional problem space into a low dimensional latent space, which we update using human feedback. Moreover, we improve the exploration efficiency of BO by biasing the search for new trajectories towards dynamically feasible and collision-free trajectories obtained using off-the-shelf motion planners. We demonstrate the efficiency of our proposed trajectory planning method in a scenario with humans that have diversified and unknown demands.