Abstract:In the era of big data and large models, automatic annotating functions for multi-modal data are of great significance for real-world AI-driven applications, such as autonomous driving and embodied AI. Unlike traditional closed-set annotation, open-vocabulary annotation is essential to achieve human-level cognition capability. However, there are few open-vocabulary auto-labeling systems for multi-modal 3D data. In this paper, we introduce OpenAnnotate3D, an open-source open-vocabulary auto-labeling system that can automatically generate 2D masks, 3D masks, and 3D bounding box annotations for vision and point cloud data. Our system integrates the chain-of-thought capabilities of Large Language Models (LLMs) and the cross-modality capabilities of vision-language models (VLMs). To the best of our knowledge, OpenAnnotate3D is one of the pioneering works for open-vocabulary multi-modal 3D auto-labeling. We conduct comprehensive evaluations on both public and in-house real-world datasets, which demonstrate that the system significantly improves annotation efficiency compared to manual annotation while providing accurate open-vocabulary auto-annotating results.
Abstract:Multiple datasets and open challenges for object detection have been introduced in recent years. To build more general and powerful object detection systems, in this paper, we construct a new large-scale benchmark termed BigDetection. Our goal is to simply leverage the training data from existing datasets (LVIS, OpenImages and Object365) with carefully designed principles, and curate a larger dataset for improved detector pre-training. Specifically, we generate a new taxonomy which unifies the heterogeneous label spaces from different sources. Our BigDetection dataset has 600 object categories and contains over 3.4M training images with 36M bounding boxes. It is much larger in multiple dimensions than previous benchmarks, which offers both opportunities and challenges. Extensive experiments demonstrate its validity as a new benchmark for evaluating different object detection methods, and its effectiveness as a pre-training dataset.