Zero shot object detection is the process of detecting objects in images without using any labeled examples.
Anomaly detection identifies departures from expected behavior in safety-critical settings. When target-domain normal data are unavailable, zero-shot anomaly detection (ZSAD) leverages vision-language models (VLMs). However, CLIP's coarse image-text alignment limits both localization and detection due to (i) spatial misalignment and (ii) weak sensitivity to fine-grained anomalies; prior work compensates with complex auxiliary modules yet largely overlooks the choice of backbone. We revisit the backbone and use TIPS-a VLM trained with spatially aware objectives. While TIPS alleviates CLIP's issues, it exposes a distributional gap between global and local features. We address this with decoupled prompts-fixed for image-level detection and learnable for pixel-level localization-and by injecting local evidence into the global score. Without CLIP-specific tricks, our TIPS-based pipeline improves image-level performance by 1.1-3.9% and pixel-level by 1.5-6.9% across seven industrial datasets, delivering strong generalization with a lean architecture. Code is available at github.com/AlirezaSalehy/Tipsomaly.
Outside-in multi-camera perception is increasingly important in indoor environments, where networks of static cameras must support multi-target tracking under occlusion and heterogeneous viewpoints. We evaluate Sparse4D, a query-based spatiotemporal 3D detection and tracking framework that fuses multi-view features in a shared world frame and propagates sparse object queries via instance memory. We study reduced input frame rates, post-training quantization (INT8 and FP8), transfer to the WILDTRACK benchmark, and Transformer Engine mixed-precision fine-tuning. To better capture identity stability, we report Average Track Duration (AvgTrackDur), which measures identity persistence in seconds. Sparse4D remains stable under moderate FPS reductions, but below 2 FPS, identity association collapses even when detections are stable. Selective quantization of the backbone and neck offers the best speed-accuracy trade-off, while attention-related modules are consistently sensitive to low precision. On WILDTRACK, low-FPS pretraining yields large zero-shot gains over the base checkpoint, while small-scale fine-tuning provides limited additional benefit. Transformer Engine mixed precision reduces latency and improves camera scalability, but can destabilize identity propagation, motivating stability-aware validation.
Deploying learned control policies on humanoid robots is challenging: policies that appear robust in simulation can execute confidently in out-of-distribution (OOD) states after Sim-to-Real transfer, leading to silent failures that risk hardware damage. Although anomaly detection can mitigate these failures, prior methods are often incompatible with high-rate control, poorly calibrated at the extremely low false-positive rates required for practical deployment, or operate as black boxes that provide a binary stop signal without explaining why the robot drifted from nominal behavior. We present RAPT, a lightweight, self-supervised deployment-time monitor for 50Hz humanoid control. RAPT learns a probabilistic spatio-temporal manifold of nominal execution from simulation and evaluates execution-time predictive deviation as a calibrated, per-dimension signal. This yields (i) reliable online OOD detection under strict false-positive constraints and (ii) a continuous, interpretable measure of Sim-to-Real mismatch that can be tracked over time to quantify how far deployment has drifted from training. Beyond detection, we introduce an automated post-hoc root-cause analysis pipeline that combines gradient-based temporal saliency derived from RAPT's reconstruction objective with LLM-based reasoning conditioned on saliency and joint kinematics to produce semantic failure diagnoses in a zero-shot setting. We evaluate RAPT on a Unitree G1 humanoid across four complex tasks in simulation and on physical hardware. In large-scale simulation, RAPT improves True Positive Rate (TPR) by 37% over the strongest baseline at a fixed episode-level false positive rate of 0.5%. On real-world deployments, RAPT achieves a 12.5% TPR improvement and provides actionable interpretability, reaching 75% root-cause classification accuracy across 16 real-world failures using only proprioceptive data.
Zero-shot out-of-vocabulary detection (ZS-OOVD) aims to accurately recognize objects of in-vocabulary (IV) categories provided at zero-shot inference, while simultaneously rejecting undefined ones (out-of-vocabulary, OOV) that lack corresponding category prompts. However, previous methods are prone to overfitting the IV classes, leading to the OOV or undefined classes being misclassified as IV ones with a high confidence score. To address this issue, this paper proposes a zero-shot OOV detector (OOVDet), a novel framework that effectively detects predefined classes while reliably rejecting undefined ones in zero-shot scenes. Specifically, due to the model's lack of prior knowledge about the distribution of OOV data, we synthesize region-level OOV prompts by sampling from the low-likelihood regions of the class-conditional Gaussian distributions in the hidden space, motivated by the assumption that unknown semantics are more likely to emerge in low-density areas of the latent space. For OOV images, we further propose a Dirichlet-based gradient attribution mechanism to mine pseudo-OOV image samples, where the attribution gradients are interpreted as Dirichlet evidence to estimate prediction uncertainty, and samples with high uncertainty are selected as pseudo-OOV images. Building on these synthesized OOV prompts and pseudo-OOV images, we construct the OOV decision boundary through a low-density prior constraint, which regularizes the optimization of OOV classes using Gaussian kernel density estimation in accordance with the above assumption. Experimental results show that our method significantly improves the OOV detection performance in zero-shot scenes. The code is available at https://github.com/binyisu/OOV-detector.
Traditional object detection systems are typically constrained to predefined categories, limiting their applicability in dynamic environments. In contrast, open-vocabulary object detection (OVD) enables the identification of objects from novel classes not present in the training set. Recent advances in visual-language modeling have led to significant progress of OVD. However, prior works face challenges in either adapting the single-scale image backbone from CLIP to the detection framework or ensuring robust visual-language alignment. We propose Visual-Language Detection (VLDet), a novel framework that revamps feature pyramid for fine-grained visual-language alignment, leading to improved OVD performance. With the VL-PUB module, VLDet effectively exploits the visual-language knowledge from CLIP and adapts the backbone for object detection through feature pyramid. In addition, we introduce the SigRPN block, which incorporates a sigmoid-based anchor-text contrastive alignment loss to improve detection of novel categories. Through extensive experiments, our approach achieves 58.7 AP for novel classes on COCO2017 and 24.8 AP on LVIS, surpassing all state-of-the-art methods and achieving significant improvements of 27.6% and 6.9%, respectively. Furthermore, VLDet also demonstrates superior zero-shot performance on closed-set object detection.
Open-vocabulary grounding requires accurate vision-language alignment under weak supervision, yet existing methods either rely on global sentence embeddings that lack fine-grained expressiveness or introduce token-level alignment with explicit supervision or heavy cross-attention designs. We propose ExpAlign, a theoretically grounded vision-language alignment framework built on a principled multiple instance learning formulation. ExpAlign introduces an Expectation Alignment Head that performs attention-based soft MIL pooling over token-region similarities, enabling implicit token and instance selection without additional annotations. To further stabilize alignment learning, we develop an energy-based multi-scale consistency regularization scheme, including a Top-K multi-positive contrastive objective and a Geometry-Aware Consistency Objective derived from a Lagrangian-constrained free-energy minimization. Extensive experiments show that ExpAlign consistently improves open-vocabulary detection and zero-shot instance segmentation, particularly on long-tail categories. Most notably, it achieves 36.2 AP$_r$ on the LVIS minival split, outperforming other state-of-the-art methods at comparable model scale, while remaining lightweight and inference-efficient.
The Segment Anything Model has revolutionized image segmentation with its zero-shot capabilities, yet its reliance on manual prompts hinders fully automated deployment. While integrating object detectors as prompt generators offers a pathway to automation, existing pipelines suffer from two fundamental limitations: objective mismatch, where detectors optimized for geometric localization do not correspond to the optimal prompting context required by SAM, and alignment overfitting in standard joint training, where the detector simply memorizes specific prompt adjustments for training samples rather than learning a generalizable policy. To bridge this gap, we introduce BLO-Inst, a unified framework that aligns detection and segmentation objectives by bi-level optimization. We formulate the alignment as a nested optimization problem over disjoint data splits. In the lower level, the SAM is fine-tuned to maximize segmentation fidelity given the current detection proposals on a subset ($D_1$). In the upper level, the detector is updated to generate bounding boxes that explicitly minimize the validation loss of the fine-tuned SAM on a separate subset ($D_2$). This effectively transforms the detector into a segmentation-aware prompt generator, optimizing the bounding boxes not just for localization accuracy, but for downstream mask quality. Extensive experiments demonstrate that BLO-Inst achieves superior performance, outperforming standard baselines on tasks in general and biomedical domains.
Open-Vocabulary Object Detection (OVOD) aims to develop the capability to detect anything. Although myriads of large-scale pre-training efforts have built versatile foundation models that exhibit impressive zero-shot capabilities to facilitate OVOD, the necessity of creating a universal understanding for any object cognition according to already pretrained foundation models is usually overlooked. Therefore, in this paper, a training-free Guess What Vision Language Model, called GW-VLM, is proposed to form a universal understanding paradigm based on our carefully designed Multi-Scale Visual Language Searching (MS-VLS) coupled with Contextual Concept Prompt (CCP) for OVOD. This approach can engage a pre-trained Vision Language Model (VLM) and a Large Language Model (LLM) in the game of "guess what". Wherein, MS-VLS leverages multi-scale visual-language soft-alignment for VLM to generate snippets from the results of class-agnostic object detection, while CCP can form the concept of flow referring to MS-VLS and then make LLM understand snippets for OVOD. Finally, the extensive experiments are carried out on natural and remote sensing datasets, including COCO val, Pascal VOC, DIOR, and NWPU-10, and the results indicate that our proposed GW-VLM can achieve superior OVOD performance compared to the-state-of-the-art methods without any training step.
The increasing availability of high-resolution satellite imagery, together with advances in deep learning, creates new opportunities for enhancing forest monitoring workflows. Two central challenges in this domain are pixel-level change detection and semantic change interpretation, particularly for complex forest dynamics. While large language models (LLMs) are increasingly adopted for data exploration, their integration with vision-language models (VLMs) for remote sensing image change interpretation (RSICI) remains underexplored, especially beyond urban environments. We introduce Forest-Chat, an LLM-driven agent designed for integrated forest change analysis. The proposed framework enables natural language querying and supports multiple RSICI tasks, including change detection, change captioning, object counting, deforestation percentage estimation, and change reasoning. Forest-Chat builds upon a multi-level change interpretation (MCI) vision-language backbone with LLM-based orchestration, and incorporates zero-shot change detection via a foundation change detection model together with an interactive point-prompt interface to support fine-grained user guidance. To facilitate adaptation and evaluation in forest environments, we introduce the Forest-Change dataset, comprising bi-temporal satellite imagery, pixel-level change masks, and multi-granularity semantic change captions generated through a combination of human annotation and rule-based methods. Experimental results demonstrate that Forest-Chat achieves strong performance on Forest-Change and on LEVIR-MCI-Trees, a tree-focused subset of LEVIR-MCI, for joint change detection and captioning, highlighting the potential of interactive, LLM-driven RSICI systems to improve accessibility, interpretability, and analytical efficiency in forest change analysis.
Referring Expression Comprehension (REC) aims to localize the image region corresponding to a natural-language query. Recent neuro-symbolic REC approaches leverage large language models (LLMs) and vision-language models (VLMs) to perform compositional reasoning, decomposing queries 4 structured programs and executing them step-by-step. While such approaches achieve interpretable reasoning and strong zero-shot generalization, they assume that intermediate reasoning steps are accurate. However, this assumption causes cascading errors: false detections and invalid relations propagate through the reasoning chain, yielding high-confidence false positives even when no target is present in the image. To address this limitation, we introduce Verification-Integrated Reasoning Operators (VIRO), a neuro-symbolic framework that embeds lightweight operator-level verifiers within reasoning steps. Each operator executes and validates its output, such as object existence or spatial relationship, thereby allowing the system to robustly handle no-target cases when verification conditions are not met. Our framework achieves state-of-the-art performance, reaching 61.1% balanced accuracy across target-present and no-target settings, and demonstrates generalization to real-world egocentric data. Furthermore, VIRO shows superior computational efficiency in terms of throughput, high reliability with a program failure rate of less than 0.3%, and scalability through decoupled program generation from execution.