Abstract:We study how vision-language models (VLMs) trained on web-scale data can be integrated into end-to-end driving systems to boost generalization and enable interactivity with human users. While recent approaches adapt VLMs to driving via single-round visual question answering (VQA), human drivers reason about decisions in multiple steps. Starting from the localization of key objects, humans estimate object interactions before taking actions. The key insight is that with our proposed task, Graph VQA, where we model graph-structured reasoning through perception, prediction and planning question-answer pairs, we obtain a suitable proxy task to mimic the human reasoning process. We instantiate datasets (DriveLM-Data) built upon nuScenes and CARLA, and propose a VLM-based baseline approach (DriveLM-Agent) for jointly performing Graph VQA and end-to-end driving. The experiments demonstrate that Graph VQA provides a simple, principled framework for reasoning about a driving scene, and DriveLM-Data provides a challenging benchmark for this task. Our DriveLM-Agent baseline performs end-to-end autonomous driving competitively in comparison to state-of-the-art driving-specific architectures. Notably, its benefits are pronounced when it is evaluated zero-shot on unseen objects or sensor configurations. We hope this work can be the starting point to shed new light on how to apply VLMs for autonomous driving. To facilitate future research, all code, data, and models are available to the public.
Abstract:Automated audio captioning (AAC) is an important cross-modality translation task, aiming at generating descriptions for audio clips. However, captions generated by previous AAC models have faced ``false-repetition'' errors due to the training objective. In such scenarios, we propose a new task of AAC error correction and hope to reduce such errors by post-processing AAC outputs. To tackle this problem, we use observation-based rules to corrupt captions without errors, for pseudo grammatically-erroneous sentence generation. One pair of corrupted and clean sentences can thus be used for training. We train a neural network-based model on the synthetic error dataset and apply the model to correct real errors in AAC outputs. Results on two benchmark datasets indicate that our approach significantly improves fluency while maintaining semantic information.