Topic:Extreme Multi Label Classification
What is Extreme Multi Label Classification? Extreme multi-label classification is the task of assigning multiple labels to a single instance from an extremely large label space.
Papers and Code
May 28, 2024
Abstract:With the emergence of a single large model capable of successfully solving a multitude of tasks in NLP, there has been growing research interest in achieving similar goals in computer vision. On the one hand, most of these generic models, referred to as generalist vision models, aim at producing unified outputs serving different tasks. On the other hand, some existing models aim to combine different input types (aka data modalities), which are then processed by a single large model. Yet, this step of combination remains specialized, which falls short of serving the initial ambition. In this paper, we showcase that such specialization (during unification) is unnecessary, in the context of RGB-X video object tracking. Our single model tracker, termed XTrack, can remain blind to any modality X during inference time. Our tracker employs a mixture of modal experts comprising those dedicated to shared commonality and others capable of flexibly performing reasoning conditioned on input modality. Such a design ensures the unification of input modalities towards a common latent space, without weakening the modality-specific information representation. With this idea, our training process is extremely simple, integrating multi-label classification loss with a routing function, thereby effectively aligning and unifying all modalities together, even from only paired data. Thus, during inference, we can adopt any modality without relying on the inductive bias of the modal prior and achieve generalist performance. Without any bells and whistles, our generalist and blind tracker can achieve competitive performance compared to well-established modal-specific models on 5 benchmarks across 3 auxiliary modalities, covering commonly used depth, thermal, and event data.
Via

Jun 25, 2024
Abstract:Hierarchical text classification (HTC) is an important task with broad applications, while few-shot HTC has gained increasing interest recently. While in-context learning (ICL) with large language models (LLMs) has achieved significant success in few-shot learning, it is not as effective for HTC because of the expansive hierarchical label sets and extremely-ambiguous labels. In this work, we introduce the first ICL-based framework with LLM for few-shot HTC. We exploit a retrieval database to identify relevant demonstrations, and an iterative policy to manage multi-layer hierarchical labels. Particularly, we equip the retrieval database with HTC label-aware representations for the input texts, which is achieved by continual training on a pretrained language model with masked language modeling (MLM), layer-wise classification (CLS, specifically for HTC), and a novel divergent contrastive learning (DCL, mainly for adjacent semantically-similar labels) objective. Experimental results on three benchmark datasets demonstrate superior performance of our method, and we can achieve state-of-the-art results in few-shot HTC.
* 17 pages
Via

May 29, 2024
Abstract:The International Classification of Diseases (ICD) is an authoritative medical classification system of different diseases and conditions for clinical and management purposes. ICD indexing assigns a subset of ICD codes to a medical record. Since human coding is labour-intensive and error-prone, many studies employ machine learning to automate the coding process. ICD coding is a challenging task, as it needs to assign multiple codes to each medical document from an extremely large hierarchically organized collection. In this paper, we propose a novel approach for ICD indexing that adopts three ideas: (1) we use a multi-level deep dilated residual convolution encoder to aggregate the information from the clinical notes and learn document representations across different lengths of the texts; (2) we formalize the task of ICD classification with auxiliary knowledge of the medical records, which incorporates not only the clinical texts but also different clinical code terminologies and drug prescriptions for better inferring the ICD codes; and (3) we introduce a graph convolutional network to leverage the co-occurrence patterns among ICD codes, aiming to enhance the quality of label representations. Experimental results show the proposed method achieves state-of-the-art performance on a number of measures.
* Accepted to LREC-COLING 2024 -- camera-ready version
Via

May 29, 2024
Abstract:The International Classification of Diseases (ICD) serves as a definitive medical classification system encompassing a wide range of diseases and conditions. The primary objective of ICD indexing is to allocate a subset of ICD codes to a medical record, which facilitates standardized documentation and management of various health conditions. Most existing approaches have suffered from selecting the proper label subsets from an extremely large ICD collection with a heavy long-tailed label distribution. In this paper, we leverage a multi-stage ``retrieve and re-rank'' framework as a novel solution to ICD indexing, via a hybrid discrete retrieval method, and re-rank retrieved candidates with contrastive learning that allows the model to make more accurate predictions from a simplified label space. The retrieval model is a hybrid of auxiliary knowledge of the electronic health records (EHR) and a discrete retrieval method (BM25), which efficiently collects high-quality candidates. In the last stage, we propose a label co-occurrence guided contrastive re-ranking model, which re-ranks the candidate labels by pulling together the clinical notes with positive ICD codes. Experimental results show the proposed method achieves state-of-the-art performance on a number of measures on the MIMIC-III benchmark.
* Accepted to NAACL 2024 -- camera-ready version
Via

Jun 24, 2024
Abstract:Identifying user's opinions and stances in long conversation threads on various topics can be extremely critical for enhanced personalization, market research, political campaigns, customer service, conflict resolution, targeted advertising, and content moderation. Hence, training language models to automate this task is critical. However, to train such models, gathering manual annotations has multiple challenges: 1) It is time-consuming and costly; 2) Conversation threads could be very long, increasing chances of noisy annotations; and 3) Interpreting instances where a user changes their opinion within a conversation is difficult because often such transitions are subtle and not expressed explicitly. Inspired by the recent success of large language models (LLMs) for complex natural language processing (NLP) tasks, we leverage Mistral Large and GPT-4 to automate the human annotation process on the following two tasks while also providing reasoning: i) User Stance classification, which involves labeling a user's stance of a post in a conversation on a five-point scale; ii) User Dogmatism classification, which deals with labeling a user's overall opinion in the conversation on a four-point scale. The majority voting on zero-shot, one-shot, and few-shot annotations from these two LLMs on 764 multi-user Reddit conversations helps us curate the USDC dataset. USDC is then used to finetune and instruction-tune multiple deployable small language models for the 5-class stance and 4-class dogmatism classification tasks. We make the code and dataset publicly available [https://anonymous.4open.science/r/USDC-0F7F].
* 32 pages, 18 figures
Via

Jan 22, 2024
Abstract:Multi-label classification problems with thousands of classes are hard to solve with in-context learning alone, as language models (LMs) might lack prior knowledge about the precise classes or how to assign them, and it is generally infeasible to demonstrate every class in a prompt. We propose a general program, $\texttt{Infer--Retrieve--Rank}$, that defines multi-step interactions between LMs and retrievers to efficiently tackle such problems. We implement this program using the $\texttt{DSPy}$ programming model, which specifies in-context systems in a declarative manner, and use $\texttt{DSPy}$ optimizers to tune it towards specific datasets by bootstrapping only tens of few-shot examples. Our primary extreme classification program, optimized separately for each task, attains state-of-the-art results across three benchmarks (HOUSE, TECH, TECHWOLF). We apply the same program to a benchmark with vastly different characteristics and attain competitive performance as well (BioDEX). Unlike prior work, our proposed solution requires no finetuning, is easily applicable to new tasks, alleviates prompt engineering, and requires only tens of labeled examples. Our code is public at https://github.com/KarelDO/xmc.dspy.
Via

Nov 09, 2023
Abstract:Extreme multi-label classification (XMLC) is the task of selecting a small subset of relevant labels from a very large set of possible labels. As such, it is characterized by long-tail labels, i.e., most labels have very few positive instances. With standard performance measures such as precision@k, a classifier can ignore tail labels and still report good performance. However, it is often argued that correct predictions in the tail are more interesting or rewarding, but the community has not yet settled on a metric capturing this intuitive concept. The existing propensity-scored metrics fall short on this goal by confounding the problems of long-tail and missing labels. In this paper, we analyze generalized metrics budgeted "at k" as an alternative solution. To tackle the challenging problem of optimizing these metrics, we formulate it in the expected test utility (ETU) framework, which aims at optimizing the expected performance on a fixed test set. We derive optimal prediction rules and construct computationally efficient approximations with provable regret guarantees and robustness against model misspecification. Our algorithm, based on block coordinate ascent, scales effortlessly to XMLC problems and obtains promising results in terms of long-tail performance.
* This is the authors' version of the work accepted to NeurIPS 2023
Via

Nov 16, 2023
Abstract:This paper focuses on the task of Extreme Multi-Label Classification (XMC) whose goal is to predict multiple labels for each instance from an extremely large label space. While existing research has primarily focused on fully supervised XMC, real-world scenarios often lack complete supervision signals, highlighting the importance of zero-shot settings. Given the large label space, utilizing in-context learning approaches is not trivial. We address this issue by introducing In-Context Extreme Multilabel Learning (ICXML), a two-stage framework that cuts down the search space by generating a set of candidate labels through incontext learning and then reranks them. Extensive experiments suggest that ICXML advances the state of the art on two diverse public benchmarks.
Via

Mar 21, 2024
Abstract:This paper focuses on open-ended video question answering, which aims to find the correct answers from a large answer set in response to a video-related question. This is essentially a multi-label classification task, since a question may have multiple answers. However, due to annotation costs, the labels in existing benchmarks are always extremely insufficient, typically one answer per question. As a result, existing works tend to directly treat all the unlabeled answers as negative labels, leading to limited ability for generalization. In this work, we introduce a simple yet effective ranking distillation framework (RADI) to mitigate this problem without additional manual annotation. RADI employs a teacher model trained with incomplete labels to generate rankings for potential answers, which contain rich knowledge about label priority as well as label-associated visual cues, thereby enriching the insufficient labeling information. To avoid overconfidence in the imperfect teacher model, we further present two robust and parameter-free ranking distillation approaches: a pairwise approach which introduces adaptive soft margins to dynamically refine the optimization constraints on various pairwise rankings, and a listwise approach which adopts sampling-based partial listwise learning to resist the bias in teacher ranking. Extensive experiments on five popular benchmarks consistently show that both our pairwise and listwise RADIs outperform state-of-the-art methods. Further analysis demonstrates the effectiveness of our methods on the insufficient labeling problem.
* Accepted to CVPR 2024
Via

Oct 16, 2023
Abstract:Dual-encoder models have demonstrated significant success in dense retrieval tasks for open-domain question answering that mostly involves zero-shot and few-shot scenarios. However, their performance in many-shot retrieval problems where training data is abundant, such as extreme multi-label classification (XMC), remains under-explored. Existing empirical evidence suggests that, for such problems, the dual-encoder method's accuracies lag behind the performance of state-of-the-art (SOTA) extreme classification methods that grow the number of learnable parameters linearly with the number of classes. As a result, some recent extreme classification techniques use a combination of dual-encoders and a learnable classification head for each class to excel on these tasks. In this paper, we investigate the potential of "pure" DE models in XMC tasks. Our findings reveal that when trained correctly standard dual-encoders can match or outperform SOTA extreme classification methods by up to 2% at Precision@1 even on the largest XMC datasets while being 20x smaller in terms of the number of trainable parameters. We further propose a differentiable topk error-based loss function, which can be used to specifically optimize for Recall@k metrics. We include our PyTorch implementation along with other resources for reproducing the results in the supplementary material.
* 26 pages, 8 figures
Via
