Extreme multi-label classification is the task of assigning multiple labels to a single instance from an extremely large label space.
Extreme Multi-label Classification (XMC) methods predict relevant labels for a given query in an extremely large label space. Recent works in XMC address this problem using deep encoders that project text descriptions to an embedding space suitable for recovering the closest labels. However, learning deep models can be computationally expensive in large output spaces, resulting in a trade-off between high performing brute-force approaches and efficient solutions. In this paper, we propose PRIME, a XMC method that employs a novel prototypical contrastive learning technique to reconcile efficiency and performance surpassing brute-force approaches. We frame XMC as a data-to-prototype prediction task where label prototypes aggregate information from related queries. More precisely, we use a shallow transformer encoder that we coin as Label Prototype Network, which enriches label representations by aggregating text-based embeddings, label centroids and learnable free vectors. We jointly train a deep encoder and the Label Prototype Network using an adaptive triplet loss objective that better adapts to the high granularity and ambiguity of extreme label spaces. PRIME achieves state-of-the-art results in several public benchmarks of different sizes and domains, while keeping the model efficient.




State-of-the-art Extreme Multi-Label Text Classification (XMTC) models rely heavily on multi-label attention layers to focus on key tokens in input text, but obtaining optimal attention weights is challenging and resource-intensive. To address this, we introduce PLANT -- Pretrained and Leveraged AtteNTion -- a novel transfer learning strategy for fine-tuning XMTC decoders. PLANT surpasses existing state-of-the-art methods across all metrics on mimicfull, mimicfifty, mimicfour, eurlex, and wikiten datasets. It particularly excels in few-shot scenarios, outperforming previous models specifically designed for few-shot scenarios by over 50 percentage points in F1 scores on mimicrare and by over 36 percentage points on mimicfew, demonstrating its superior capability in handling rare codes. PLANT also shows remarkable data efficiency in few-shot scenarios, achieving precision comparable to traditional models with significantly less data. These results are achieved through key technical innovations: leveraging a pretrained Learning-to-Rank model as the planted attention layer, integrating mutual-information gain to enhance attention, introducing an inattention mechanism, and implementing a stateful-decoder to maintain context. Comprehensive ablation studies validate the importance of these contributions in realizing the performance gains.




Assigning a subset of labels from a fixed pool of labels to a given input text is a text classification problem with many real-world applications, such as in recommender systems. Two separate research streams address this issue. Hierarchical Text Classification (HTC) focuses on datasets with smaller label pools of hundreds of entries, accompanied by a semantic label hierarchy. In contrast, eXtreme Multi-Label Text Classification (XML) considers very large label pools with up to millions of entries, in which the labels are not arranged in any particular manner. However, in XML, a common approach is to construct an artificial hierarchy without any semantic information before or during the training process. Here, we investigate how state-of-the-art models from one domain perform when trained and tested on datasets from the other domain. The HBGL and HGLCR models from the HTC domain are trained and tested on the datasets Wiki10-31K, AmazonCat-13K, and Amazon-670K from the XML domain. On the other side, the XML models CascadeXML and XR-Transformer are trained and tested on the datasets Web of Science, The New York Times Annotated Corpus, and RCV1-V2 from the HTC domain. HTC models, on the other hand, are not equipped to handle the size of XML datasets and achieve poor transfer results. The code and numerous files that are needed to reproduce our results can be obtained from https://github.com/FloHauss/XMC_HTC




Extreme multilabel classification (XMLC) problems occur in settings such as related product recommendation, large-scale document tagging, or ad prediction, and are characterized by a label space that can span millions of possible labels. There are two implicit tasks that the classifier performs: \emph{Evaluating} each potential label for its expected worth, and then \emph{selecting} the best candidates. For the latter task, only the relative order of scores matters, and this is what is captured by the standard evaluation procedure in the XMLC literature. However, in many practical applications, it is important to have a good estimate of the actual probability of a label being relevant, e.g., to decide whether to pay the fee to be allowed to display the corresponding ad. To judge whether an extreme classifier is indeed suited to this task, one can look, for example, to whether it returns \emph{calibrated} probabilities, which has hitherto not been done in this field. Therefore, this paper aims to establish the current status quo of calibration in XMLC by providing a systematic evaluation, comprising nine models from four different model families across seven benchmark datasets. As naive application of Expected Calibration Error (ECE) leads to meaningless results in long-tailed XMC datasets, we instead introduce the notion of \emph{calibration@k} (e.g., ECE@k), which focusses on the top-$k$ probability mass, offering a more appropriate measure for evaluating probability calibration in XMLC scenarios. While we find that different models can exhibit widely varying reliability plots, we also show that post-training calibration via a computationally efficient isotonic regression method enhances model calibration without sacrificing prediction accuracy. Thus, the practitioner can choose the model family based on accuracy considerations, and leave calibration to isotonic regression.




Emotion and personality are central elements in understanding human psychological states. Emotions reflect an individual subjective experiences, while personality reveals relatively stable behavioral and cognitive patterns. Existing affective computing datasets often annotate emotion and personality traits separately, lacking fine-grained labeling of micro-emotions and emotion intensity in both single-label and multi-label classifications. Chinese emotion datasets are extremely scarce, and datasets capturing Chinese user personality traits are even more limited. To address these gaps, this study collected data from the major social media platform Weibo, screening 11,338 valid users from over 50,000 individuals with diverse MBTI personality labels and acquiring 566,900 posts along with the user MBTI personality tags. Using the EQN method, we compiled a multi-label Chinese affective computing dataset that integrates the same user's personality traits with six emotions and micro-emotions, each annotated with intensity levels. Validation results across multiple NLP classification models demonstrate the dataset strong utility. This dataset is designed to advance machine recognition of complex human emotions and provide data support for research in psychology, education, marketing, finance, and politics.




In Extreme Multi Label Completion (XMLCo), the objective is to predict the missing labels of a collection of documents. Together with XML Classification, XMLCo is arguably one of the most challenging document classification tasks, as the very high number of labels (at least ten of thousands) is generally very large compared to the number of available labelled documents in the training dataset. Such a task is often accompanied by a taxonomy that encodes the labels organic relationships, and many methods have been proposed to leverage this hierarchy to improve the results of XMLCo algorithms. In this paper, we propose a new approach to this problem, TAMLEC (Taxonomy-Aware Multi-task Learning for Extreme multi-label Completion). TAMLEC divides the problem into several Taxonomy-Aware Tasks, i.e. subsets of labels adapted to the hierarchical paths of the taxonomy, and trains on these tasks using a dynamic Parallel Feature sharing approach, where some parts of the model are shared between tasks while others are task-specific. Then, at inference time, TAMLEC uses the labels available in a document to infer the appropriate tasks and to predict missing labels. To achieve this result, TAMLEC uses a modified transformer architecture that predicts ordered sequences of labels on a Weak-Semilattice structure that is naturally induced by the tasks. This approach yields multiple advantages. First, our experiments on real-world datasets show that TAMLEC outperforms state-of-the-art methods for various XMLCo problems. Second, TAMLEC is by construction particularly suited for few-shots XML tasks, where new tasks or labels are introduced with only few examples, and extensive evaluations highlight its strong performance compared to existing methods.




Online sellers and advertisers are recommended keyphrases for their listed products, which they bid on to enhance their sales. One popular paradigm that generates such recommendations is Extreme Multi-Label Classification (XMC), which involves tagging/mapping keyphrases to items. We outline the limitations of using traditional item-query based tagging or mapping techniques for keyphrase recommendations on E-Commerce platforms. We introduce GraphEx, an innovative graph-based approach that recommends keyphrases to sellers using extraction of token permutations from item titles. Additionally, we demonstrate that relying on traditional metrics such as precision/recall can be misleading in practical applications, thereby necessitating a combination of metrics to evaluate performance in real-world scenarios. These metrics are designed to assess the relevance of keyphrases to items and the potential for buyer outreach. GraphEx outperforms production models at eBay, achieving the objectives mentioned above. It supports near real-time inferencing in resource-constrained production environments and scales effectively for billions of items.




Open-vocabulary Extreme Multi-label Classification (OXMC) extends traditional XMC by allowing prediction beyond an extremely large, predefined label set (typically $10^3$ to $10^{12}$ labels), addressing the dynamic nature of real-world labeling tasks. However, self-selection bias in data annotation leads to significant missing labels in both training and test data, particularly for less popular inputs. This creates two critical challenges: generation models learn to be "lazy'" by under-generating labels, and evaluation becomes unreliable due to insufficient annotation in the test set. In this work, we introduce Positive-Unlabeled Sequence Learning (PUSL), which reframes OXMC as an infinite keyphrase generation task, addressing the generation model's laziness. Additionally, we propose to adopt a suite of evaluation metrics, F1@$\mathcal{O}$ and newly proposed B@$k$, to reliably assess OXMC models with incomplete ground truths. In a highly imbalanced e-commerce dataset with substantial missing labels, PUSL generates 30% more unique labels, and 72% of its predictions align with actual user queries. On the less skewed EURLex-4.3k dataset, PUSL demonstrates superior F1 scores, especially as label counts increase from 15 to 30. Our approach effectively tackles both the modeling and evaluation challenges in OXMC with missing labels.




The Multimodal Learning Workshop (PBVS 2024) aims to improve the performance of automatic target recognition (ATR) systems by leveraging both Synthetic Aperture Radar (SAR) data, which is difficult to interpret but remains unaffected by weather conditions and visible light, and Electro-Optical (EO) data for simultaneous learning. The subtask, known as the Multi-modal Aerial View Imagery Challenge - Classification, focuses on predicting the class label of a low-resolution aerial image based on a set of SAR-EO image pairs and their respective class labels. The provided dataset consists of SAR-EO pairs, characterized by a severe long-tail distribution with over a 1000-fold difference between the largest and smallest classes, making typical long-tail methods difficult to apply. Additionally, the domain disparity between the SAR and EO datasets complicates the effectiveness of standard multimodal methods. To address these significant challenges, we propose a two-stage learning approach that utilizes self-supervised techniques, combined with multimodal learning and inference through SAR-to-EO translation for effective EO utilization. In the final testing phase of the PBVS 2024 Multi-modal Aerial View Image Challenge - Classification (SAR Classification) task, our model achieved an accuracy of 21.45%, an AUC of 0.56, and a total score of 0.30, placing us 9th in the competition.




We study open-world multi-label text classification under extremely weak supervision (XWS), where the user only provides a brief description for classification objectives without any labels or ground-truth label space. Similar single-label XWS settings have been explored recently, however, these methods cannot be easily adapted for multi-label. We observe that (1) most documents have a dominant class covering the majority of content and (2) long-tail labels would appear in some documents as a dominant class. Therefore, we first utilize the user description to prompt a large language model (LLM) for dominant keyphrases of a subset of raw documents, and then construct a (initial) label space via clustering. We further apply a zero-shot multi-label classifier to locate the documents with small top predicted scores, so we can revisit their dominant keyphrases for more long-tail labels. We iterate this process to discover a comprehensive label space and construct a multi-label classifier as a novel method, X-MLClass. X-MLClass exhibits a remarkable increase in ground-truth label space coverage on various datasets, for example, a 40% improvement on the AAPD dataset over topic modeling and keyword extraction methods. Moreover, X-MLClass achieves the best end-to-end multi-label classification accuracy.