What is Super Resolution? Super-resolution is a task in computer vision that involves increasing the resolution of an image or video by generating missing high-frequency details from low-resolution input. The goal is to produce an output image with a higher resolution than the input image, while preserving the original content and structure.
Papers and Code
Feb 21, 2025
Abstract:Low-bit model quantization for image super-resolution (SR) is a longstanding task that is renowned for its surprising compression and acceleration ability. However, accuracy degradation is inevitable when compressing the full-precision (FP) model to ultra-low bit widths (2~4 bits). Experimentally, we observe that the degradation of quantization is mainly attributed to the quantization of activation instead of model weights. In numerical analysis, the condition number of weights could measure how much the output value can change for a small change in the input argument, inherently reflecting the quantization error. Therefore, we propose CondiQuant, a condition number based low-bit post-training quantization for image super-resolution. Specifically, we formulate the quantization error as the condition number of weight metrics. By decoupling the representation ability and the quantization sensitivity, we design an efficient proximal gradient descent algorithm to iteratively minimize the condition number and maintain the output still. With comprehensive experiments, we demonstrate that CondiQuant outperforms existing state-of-the-art post-training quantization methods in accuracy without computation overhead and gains the theoretically optimal compression ratio in model parameters. Our code and model are released at https://github.com/Kai-Liu001/CondiQuant.
* 10 pages, 5 figures. Code and models are released at
https://github.com/Kai-Liu001/CondiQuant
Via

Feb 18, 2025
Abstract:Recent advances in face super-resolution research have utilized the Transformer architecture. This method processes the input image into a series of small patches. However, because of the strong correlation between different facial components in facial images. When it comes to super-resolution of low-resolution images, existing algorithms cannot handle the relationships between patches well, resulting in distorted facial components in the super-resolution results. To solve the problem, we propose a transformer architecture based on graph neural networks called graph vision transformer network. We treat each patch as a graph node and establish an adjacency matrix based on the information between patches. In this way, the patch only interacts between neighboring patches, further processing the relationship of facial components. Quantitative and visualization experiments have underscored the superiority of our algorithm over state-of-the-art techniques. Through detailed comparisons, we have demonstrated that our algorithm possesses more advanced super-resolution capabilities, particularly in enhancing facial components. The PyTorch code is available at https://github.com/continueyang/GVTNet
Via

Feb 18, 2025
Abstract:Recently, the application of diffusion models in super-resolution tasks has become a popular research direction. Existing work is focused on fully migrating diffusion models to SR tasks. The diffusion model is proposed in the field of image generation, so in order to make the generated results diverse, the diffusion model combines random Gaussian noise and distributed sampling to increase the randomness of the model. However, the essence of super-resolution tasks requires the model to generate high-resolution images with fidelity. Excessive addition of random factors can result in the model generating detailed information that does not belong to the HR image. To address this issue, we propose a new diffusion model called Deltadiff, which uses only residuals between images for diffusion, making the entire diffusion process more stable. The experimental results show that our method surpasses state-of-the-art models and generates results with better fidelity. Our code and model are publicly available at https://github.com/continueyang/DeltaDiff
Via

Feb 18, 2025
Abstract:Super-resolution (SR) techniques are essential for improving Earth System Model (ESM) data's spatial resolution, which helps better understand complex environmental processes. This paper presents a new algorithm, ViFOR, which combines Vision Transformers (ViT) and Implicit Neural Representation Networks (INRs) to generate High-Resolution (HR) images from Low-Resolution (LR) inputs. ViFOR introduces a novel integration of Fourier-based activation functions within the Vision Transformer architecture, enabling it to effectively capture global context and high-frequency details critical for accurate SR reconstruction. The results show that ViFOR outperforms state-of-the-art methods such as ViT, Sinusoidal Representation Networks (SIREN), and SR Generative Adversarial Networks (SRGANs) based on metrics like Peak Signal-to-Noise Ratio (PSNR) and Mean Squared Error (MSE) both for global as well as the local imagery. ViFOR improves PSNR of up to 4.18 dB, 1.56 dB, and 1.73 dB over ViT for full images in the Source Temperature, Shortwave, and Longwave Flux.
Via

Feb 17, 2025
Abstract:3D volumetric video provides immersive experience and is gaining traction in digital media. Despite its rising popularity, the streaming of volumetric video content poses significant challenges due to the high data bandwidth requirement. A natural approach to mitigate the bandwidth issue is to reduce the volumetric video's data rate by downsampling the content prior to transmission. The video can then be upsampled at the receiver's end using a super-resolution (SR) algorithm to reconstruct the high-resolution details. While super-resolution techniques have been extensively explored and advanced for 2D video content, there is limited work on SR algorithms tailored for volumetric videos. To address this gap and the growing need for efficient volumetric video streaming, we have developed VoLUT with a new SR algorithm specifically designed for volumetric content. Our algorithm uniquely harnesses the power of lookup tables (LUTs) to facilitate the efficient and accurate upscaling of low-resolution volumetric data. The use of LUTs enables our algorithm to quickly reference precomputed high-resolution values, thereby significantly reducing the computational complexity and time required for upscaling. We further apply adaptive video bit rate algorithm (ABR) to dynamically determine the downsampling rate according to the network condition and stream the selected video rate to the receiver. Compared to related work, VoLUT is the first to enable high-quality 3D SR on commodity mobile devices at line-rate. Our evaluation shows VoLUT can reduce bandwidth usage by 70% , boost QoE by 36.7% for volumetric video streaming and achieve 3D SR speed-up with no quality compromise.
Via

Feb 17, 2025
Abstract:We present linear prediction as a differentiable padding method. For each channel, a stochastic autoregressive linear model is fitted to the padding input by minimizing its noise terms in the least-squares sense. The padding is formed from the expected values of the autoregressive model given the known pixels. We trained the convolutional RVSR super-resolution model from scratch on satellite image data, using different padding methods. Linear prediction padding slightly reduced the mean square super-resolution error compared to zero and replication padding, with a moderate increase in time cost. Linear prediction padding better approximated satellite image data and RVSR feature map data. With zero padding, RVSR appeared to use more of its capacity to compensate for the high approximation error. Cropping the network output by a few pixels reduced the super-resolution error and the effect of the choice of padding method on the error, favoring output cropping with the faster replication and zero padding methods, for the studied workload.
* 18 pages, 20 figures including appendix; to be submitted for review;
for source code, see https://doi.org/10.5281/zenodo.14871260
Via

Feb 17, 2025
Abstract:Simulation and optimization are crucial for advancing the engineering design of complex systems and processes. Traditional optimization methods require substantial computational time and effort due to their reliance on resource-intensive simulations, such as finite element analysis, and the complexity of rigorous optimization algorithms. Data-agnostic AI-based surrogate models, such as Physics-Informed Neural Operators (PINOs), offer a promising alternative to these conventional simulations, providing drastically reduced inference time, unparalleled data efficiency, and zero-shot super-resolution capability. However, the predictive accuracy of these models is often constrained to small, low-dimensional design spaces or systems with relatively simple dynamics. To address this, we introduce a novel Physics-Informed DeepONet (PIDON) architecture, which extends the capabilities of conventional neural operators to effectively model the nonlinear behavior of complex engineering systems across high-dimensional design spaces and a wide range of dynamic design configurations. This new architecture outperforms existing SOTA models, enabling better predictions across broader design spaces. Leveraging PIDON's differentiability, we integrate a gradient-based optimization approach using the Adam optimizer to efficiently determine optimal design variables. This forms an end-to-end gradient-based optimization framework that accelerates the design process while enhancing scalability and efficiency. We demonstrate the effectiveness of this framework in the optimization of aerospace-grade composites curing processes achieving a 3x speedup in obtaining optimal design variables compared to gradient-free methods. Beyond composites processing, the proposed model has the potential to be used as a scalable and efficient optimization tool for broader applications in advanced engineering and digital twin systems.
* 15 pages, 7 figures
Via

Feb 18, 2025
Abstract:Recognizing events and their coreferential mentions in a document is essential for understanding semantic meanings of text. The existing research on event coreference resolution is mostly limited to news articles. In this paper, we present the first dataset for the legal domain, LegalCore, which has been annotated with comprehensive event and event coreference information. The legal contract documents we annotated in this dataset are several times longer than news articles, with an average length of around 25k tokens per document. The annotations show that legal documents have dense event mentions and feature both short-distance and super long-distance coreference links between event mentions. We further benchmark mainstream Large Language Models (LLMs) on this dataset for both event detection and event coreference resolution tasks, and find that this dataset poses significant challenges for state-of-the-art open-source and proprietary LLMs, which perform significantly worse than a supervised baseline. We will publish the dataset as well as the code.
Via

Feb 12, 2025
Abstract:Electroencephalography (EEG) activity contains a wealth of information about what is happening within the human brain. Recording more of this data has the potential to unlock endless future applications. However, the cost of EEG hardware is increasingly expensive based upon the number of EEG channels being recorded simultaneously. We combat this problem in this paper by proposing a novel deep EEG super-resolution (SR) approach based on Generative Adversarial Networks (GANs). This approach can produce high spatial resolution EEG data from low resolution samples, by generating channel-wise upsampled data to effectively interpolate numerous missing channels, thus reducing the need for expensive EEG equipment. We tested the performance using an EEG dataset from a mental imagery task. Our proposed GAN model provided 10^4 fold and 10^2 fold reduction in mean-squared error (MSE) and mean-absolute error (MAE), respectively, over the baseline bicubic interpolation method. We further validate our method by training a classifier on the original classification task, which displayed minimal loss in accuracy while using the super-resolved data. The proposed SR EEG by GAN is a promising approach to improve the spatial resolution of low density EEG headsets.
Via

Feb 12, 2025
Abstract:Due to limitations of storage and bandwidth, videos stored and transmitted on the Internet are usually low-quality with low-resolution and compression noise. Although video super-resolution (VSR) is an efficient technique to enhance video resolution, relatively VSR methods focus on compressed videos. Directly applying general VSR approaches leads to the failure of improving practical videos, especially when frames are highly compressed at a low bit rate. Recently, diffusion models have achieved superior performance in low-level visual tasks, and their high-realism generation capability enables them to be applied in VSR. To synthesize more compression-lost details and refine temporal consistency, we propose a novel Spatial Degradation-Aware and Temporal Consistent (SDATC) diffusion model for compressed VSR. Specifically, we introduce a distortion Control module (DCM) to modulate diffusion model inputs and guide the generation. Next, the diffusion model executes the denoising process for texture generation with fine-tuned spatial prompt-based compression-aware module (PCAM) and spatio-temporal attention module (STAM). PCAM extracts features to encode specific compression information dynamically. STAM extends the spatial attention mechanism to a spatio-temporal dimension for capturing temporal correlation. Extensive experimental results on benchmark datasets demonstrate the effectiveness of the proposed modules in enhancing compressed videos.
Via
