Latent Action Models (LAMs) learn to extract action-relevant representations solely from raw observations, enabling reinforcement learning from unlabelled videos and significantly scaling available training data. However, LAMs face a critical challenge in disentangling action-relevant features from action-correlated noise (e.g., background motion). Failing to filter these distractors causes LAMs to capture spurious correlations and build sub-optimal latent action spaces. In this paper, we introduce MaskLAM -- a lightweight modification to LAM training to mitigate this issue by incorporating visual agent segmentation. MaskLAM utilises segmentation masks from pretrained foundation models to weight the LAM reconstruction loss, thereby prioritising salient information over background elements while requiring no architectural modifications. We demonstrate the effectiveness of our method on continuous-control MuJoCo tasks, modified with action-correlated background noise. Our approach yields up to a 4x increase in accrued rewards compared to standard baselines and a 3x improvement in the latent action quality, as evidenced by linear probe evaluation.
Diffusion policies are expressive yet incur high inference latency. Flow Matching (FM) enables one-step generation, but integrating it into Maximum Entropy Reinforcement Learning (MaxEnt RL) is challenging: the optimal policy is an intractable energy-based distribution, and the efficient log-likelihood estimation required to balance exploration and exploitation suffers from severe discretization bias. We propose \textbf{F}low-based \textbf{L}og-likelihood-\textbf{A}ware \textbf{M}aximum \textbf{E}ntropy RL (\textbf{FLAME}), a principled framework that addresses these challenges. First, we derive a Q-Reweighted FM objective that bypasses partition function estimation via importance reweighting. Second, we design a decoupled entropy estimator that rigorously corrects bias, which enables efficient exploration and brings the policy closer to the optimal MaxEnt policy. Third, we integrate the MeanFlow formulation to achieve expressive and efficient one-step control. Empirical results on MuJoCo show that FLAME outperforms Gaussian baselines and matches multi-step diffusion policies with significantly lower inference cost. Code is available at https://github.com/lzqw/FLAME.
We present $multipanda\_ros2$, a novel open-source ROS2 architecture for multi-robot control of Franka Robotics robots. Leveraging ros2 control, this framework provides native ROS2 interfaces for controlling any number of robots from a single process. Our core contributions address key challenges in real-time torque control, including interaction control and robot-environment modeling. A central focus of this work is sustaining a 1kHz control frequency, a necessity for real-time control and a minimum frequency required by safety standards. Moreover, we introduce a controllet-feature design pattern that enables controller-switching delays of $\le 2$ ms, facilitating reproducible benchmarking and complex multi-robot interaction scenarios. To bridge the simulation-to-reality (sim2real) gap, we integrate a high-fidelity MuJoCo simulation with quantitative metrics for both kinematic accuracy and dynamic consistency (torques, forces, and control errors). Furthermore, we demonstrate that real-world inertial parameter identification can significantly improve force and torque accuracy, providing a methodology for iterative physics refinement. Our work extends approaches from soft robotics to rigid dual-arm, contact-rich tasks, showcasing a promising method to reduce the sim2real gap and providing a robust, reproducible platform for advanced robotics research.
Among on-policy reinforcement learning algorithms, Proximal Policy Optimization (PPO) demonstrates is widely favored for its simplicity, numerical stability, and strong empirical performance. Standard PPO relies on surrogate objectives defined via importance ratios, which require evaluating policy likelihood that is typically straightforward when the policy is modeled as a Gaussian distribution. However, extending PPO to more expressive, high-capacity policy models such as continuous normalizing flows (CNFs), also known as flow-matching models, is challenging because likelihood evaluation along the full flow trajectory is computationally expensive and often numerically unstable. To resolve this issue, we propose PolicyFlow, a novel on-policy CNF-based reinforcement learning algorithm that integrates expressive CNF policies with PPO-style objectives without requiring likelihood evaluation along the full flow path. PolicyFlow approximates importance ratios using velocity field variations along a simple interpolation path, reducing computational overhead without compromising training stability. To further prevent mode collapse and further encourage diverse behaviors, we propose the Brownian Regularizer, an implicit policy entropy regularizer inspired by Brownian motion, which is conceptually elegant and computationally lightweight. Experiments on diverse tasks across various environments including MultiGoal, PointMaze, IsaacLab and MuJoCo Playground show that PolicyFlow achieves competitive or superior performance compared to PPO using Gaussian policies and flow-based baselines including FPO and DPPO. Notably, results on MultiGoal highlight PolicyFlow's ability to capture richer multimodal action distributions.
We present mjlab, a lightweight, open-source framework for robot learning that combines GPU-accelerated simulation with composable environments and minimal setup friction. mjlab adopts the manager-based API introduced by Isaac Lab, where users compose modular building blocks for observations, rewards, and events, and pairs it with MuJoCo Warp for GPU-accelerated physics. The result is a framework installable with a single command, requiring minimal dependencies, and providing direct access to native MuJoCo data structures. mjlab ships with reference implementations of velocity tracking, motion imitation, and manipulation tasks.
Tendon-driven anthropomorphic robotic hands often lack direct joint angle sensing, as the integration of joint encoders can compromise mechanical compactness and dexterity. This paper presents a computational method for estimating joint positions from measured tendon displacements and tensions. An efficient kinematic modeling framework for anthropomorphic hands is first introduced based on the Denavit-Hartenberg convention. Using a simplified tendon model, a system of nonlinear equations relating tendon states to joint positions is derived and solved via a nonlinear optimization approach. The estimated joint angles are then employed for closed-loop control through a Jacobian-based proportional-integral (PI) controller augmented with a feedforward term, enabling gesture tracking without direct joint sensing. The effectiveness and limitations of the proposed estimation and control framework are demonstrated in the MuJoCo simulation environment using the Anatomically Correct Biomechatronic Hand, featuring five degrees of freedom for each long finger and six degrees of freedom for the thumb.
Gradient-regularized value learning methods improve sample efficiency by leveraging learned models of transition dynamics and rewards to estimate return gradients. However, existing approaches, such as MAGE, struggle in stochastic or noisy environments, limiting their applicability. In this work, we address these limitations by extending distributional reinforcement learning on continuous state-action spaces to model not only the distribution over scalar state-action value functions but also over their gradients. We refer to this approach as Distributional Sobolev Training. Inspired by Stochastic Value Gradients (SVG), our method utilizes a one-step world model of reward and transition distributions implemented via a conditional Variational Autoencoder (cVAE). The proposed framework is sample-based and employs Max-sliced Maximum Mean Discrepancy (MSMMD) to instantiate the distributional Bellman operator. We prove that the Sobolev-augmented Bellman operator is a contraction with a unique fixed point, and highlight a fundamental smoothness trade-off underlying contraction in gradient-aware RL. To validate our method, we first showcase its effectiveness on a simple stochastic reinforcement learning toy problem, then benchmark its performance on several MuJoCo environments.
Existing value-based online reinforcement learning (RL) algorithms suffer from slow policy exploitation due to ineffective exploration and delayed policy updates. To address these challenges, we propose an algorithm called Instant Retrospect Action (IRA). Specifically, we propose Q-Representation Discrepancy Evolution (RDE) to facilitate Q-network representation learning, enabling discriminative representations for neighboring state-action pairs. In addition, we adopt an explicit method to policy constraints by enabling Greedy Action Guidance (GAG). This is achieved through backtracking historical actions, which effectively enhances the policy update process. Our proposed method relies on providing the learning algorithm with accurate $k$-nearest-neighbor action value estimates and learning to design a fast-adaptable policy through policy constraints. We further propose the Instant Policy Update (IPU) mechanism, which enhances policy exploitation by systematically increasing the frequency of policy updates. We further discover that the early-stage training conservatism of the IRA method can alleviate the overestimation bias problem in value-based RL. Experimental results show that IRA can significantly improve the learning efficiency and final performance of online RL algorithms on eight MuJoCo continuous control tasks.
Offline Reinforcement Learning (ORL) holds immense promise for safety-critical domains like industrial robotics, where real-time environmental interaction is often prohibitive. A primary obstacle in ORL remains the distributional shift between the static dataset and the learned policy, which typically mandates high degrees of conservatism that can restrain potential policy improvements. We present MoReBRAC, a model-based framework that addresses this limitation through Uncertainty-Aware latent synthesis. Instead of relying solely on the fixed data, MoReBRAC utilizes a dual-recurrent world model to synthesize high-fidelity transitions that augment the training manifold. To ensure the reliability of this synthetic data, we implement a hierarchical uncertainty pipeline integrating Variational Autoencoder (VAE) manifold detection, model sensitivity analysis, and Monte Carlo (MC) dropout. This multi-layered filtering process guarantees that only transitions residing within high-confidence regions of the learned dynamics are utilized. Our results on D4RL Gym-MuJoCo benchmarks reveal significant performance gains, particularly in ``random'' and ``suboptimal'' data regimes. We further provide insights into the role of the VAE as a geometric anchor and discuss the distributional trade-offs encountered when learning from near-optimal datasets.
Robots that follow natural-language instructions often either plan at a high level using hand-designed interfaces or rely on large end-to-end models that are difficult to deploy for real-time control. We propose TeNet (Text-to-Network), a framework for instantiating compact, task-specific robot policies directly from natural language descriptions. TeNet conditions a hypernetwork on text embeddings produced by a pretrained large language model (LLM) to generate a fully executable policy, which then operates solely on low-dimensional state inputs at high control frequencies. By using the language only once at the policy instantiation time, TeNet inherits the general knowledge and paraphrasing robustness of pretrained LLMs while remaining lightweight and efficient at execution time. To improve generalization, we optionally ground language in behavior during training by aligning text embeddings with demonstrated actions, while requiring no demonstrations at inference time. Experiments on MuJoCo and Meta-World benchmarks show that TeNet produces policies that are orders of magnitude smaller than sequence-based baselines, while achieving strong performance in both multi-task and meta-learning settings and supporting high-frequency control. These results show that text-conditioned hypernetworks offer a practical way to build compact, language-driven controllers for ressource-constrained robot control tasks with real-time requirements.