Abstract:Recent advancements in robotic loco-manipulation have leveraged Virtual Reality (VR) to enhance the precision and immersiveness of teleoperation systems, significantly outperforming traditional methods reliant on 2D camera feeds and joystick controls. Despite these advancements, challenges remain, particularly concerning user experience across different setups. This paper introduces a novel VR-based teleoperation framework designed for a robotic manipulator integrated onto a mobile platform. Central to our approach is the application of Gaussian splatting, a technique that abstracts the manipulable scene into a VR environment, thereby enabling more intuitive and immersive interactions. Users can navigate and manipulate within the virtual scene as if interacting with a real robot, enhancing both the engagement and efficacy of teleoperation tasks. An extensive user study validates our approach, demonstrating significant usability and efficiency improvements. Two-thirds (66%) of participants completed tasks faster, achieving an average time reduction of 43%. Additionally, 93% preferred the Gaussian Splat interface overall, with unanimous (100%) recommendations for future use, highlighting improvements in precision, responsiveness, and situational awareness. Finally, we demonstrate the effectiveness of our framework through real-world experiments in two distinct application scenarios, showcasing the practical capabilities and versatility of the Splat-based VR interface.
Abstract:High-fidelity simulation is essential for robotics research, enabling safe and efficient testing of perception, control, and navigation algorithms. However, achieving both photorealistic rendering and accurate physics modeling remains a challenge. This paper presents a novel simulation framework--the Unreal Robotics Lab (URL) that integrates the Unreal Engine's advanced rendering capabilities with MuJoCo's high-precision physics simulation. Our approach enables realistic robotic perception while maintaining accurate physical interactions, facilitating benchmarking and dataset generation for vision-based robotics applications. The system supports complex environmental effects, such as smoke, fire, and water dynamics, which are critical for evaluating robotic performance under adverse conditions. We benchmark visual navigation and SLAM methods within our framework, demonstrating its utility for testing real-world robustness in controlled yet diverse scenarios. By bridging the gap between physics accuracy and photorealistic rendering, our framework provides a powerful tool for advancing robotics research and sim-to-real transfer.
Abstract:Understanding the traversability of terrain is essential for autonomous robot navigation, particularly in unstructured environments such as natural landscapes. Although traditional methods, such as occupancy mapping, provide a basic framework, they often fail to account for the complex mobility capabilities of some platforms such as legged robots. In this work, we propose a method for estimating terrain traversability by learning from demonstrations of human walking. Our approach leverages dense, pixel-wise feature embeddings generated using the DINOv2 vision Transformer model, which are processed through an encoder-decoder MLP architecture to analyze terrain segments. The averaged feature vectors, extracted from the masked regions of interest, are used to train the model in a reconstruction-based framework. By minimizing reconstruction loss, the network distinguishes between familiar terrain with a low reconstruction error and unfamiliar or hazardous terrain with a higher reconstruction error. This approach facilitates the detection of anomalies, allowing a legged robot to navigate more effectively through challenging terrain. We run real-world experiments on the ANYmal legged robot both indoor and outdoor to prove our proposed method. The code is open-source, while video demonstrations can be found on our website: https://rpl-cs-ucl.github.io/STEPP