Recent advancements in robotic loco-manipulation have leveraged Virtual Reality (VR) to enhance the precision and immersiveness of teleoperation systems, significantly outperforming traditional methods reliant on 2D camera feeds and joystick controls. Despite these advancements, challenges remain, particularly concerning user experience across different setups. This paper introduces a novel VR-based teleoperation framework designed for a robotic manipulator integrated onto a mobile platform. Central to our approach is the application of Gaussian splatting, a technique that abstracts the manipulable scene into a VR environment, thereby enabling more intuitive and immersive interactions. Users can navigate and manipulate within the virtual scene as if interacting with a real robot, enhancing both the engagement and efficacy of teleoperation tasks. An extensive user study validates our approach, demonstrating significant usability and efficiency improvements. Two-thirds (66%) of participants completed tasks faster, achieving an average time reduction of 43%. Additionally, 93% preferred the Gaussian Splat interface overall, with unanimous (100%) recommendations for future use, highlighting improvements in precision, responsiveness, and situational awareness. Finally, we demonstrate the effectiveness of our framework through real-world experiments in two distinct application scenarios, showcasing the practical capabilities and versatility of the Splat-based VR interface.