Scene understanding with free-form language has been widely explored within diverse modalities such as images, point clouds, and LiDAR. However, related studies on event sensors are scarce or narrowly centered on semantic-level understanding. We introduce SEAL, the first Semantic-aware Segment Any Events framework that addresses Open-Vocabulary Event Instance Segmentation (OV-EIS). Given the visual prompt, our model presents a unified framework to support both event segmentation and open-vocabulary mask classification at multiple levels of granularity, including instance-level and part-level. To enable thorough evaluation on OV-EIS, we curate four benchmarks that cover label granularity from coarse to fine class configurations and semantic granularity from instance-level to part-level understanding. Extensive experiments show that our SEAL largely outperforms proposed baselines in terms of performance and inference speed with a parameter-efficient architecture. In the Appendix, we further present a simple variant of our SEAL achieving generic spatiotemporal OV-EIS that does not require any visual prompts from users in the inference. Check out our project page in https://0nandon.github.io/SEAL
This paper presents GridNet-HD, a multi-modal dataset for 3D semantic segmentation of overhead electrical infrastructures, pairing high-density LiDAR with high-resolution oblique imagery. The dataset comprises 7,694 images and 2.5 billion points annotated into 11 classes, with predefined splits and mIoU metrics. Unimodal (LiDAR-only, image-only) and multi-modal fusion baselines are provided. On GridNet-HD, fusion models outperform the best unimodal baseline by +5.55 mIoU, highlighting the complementarity of geometry and appearance. As reviewed in Sec. 2, no public dataset jointly provides high-density LiDAR and high-resolution oblique imagery with 3D semantic labels for power-line assets. Dataset, baselines, and codes are available: https://huggingface.co/collections/heig-vd-geo/gridnet-hd.
Developing cost-efficient and reliable perception systems remains a central challenge for automated vehicles. LiDAR and camera-based systems dominate, yet they present trade-offs in cost, robustness and performance under adverse conditions. This work introduces a novel framework for learning-based 3D semantic segmentation using Calyo Pulse, a modular, solid-state 3D ultrasound sensor system for use in harsh and cluttered environments. A 3D U-Net architecture is introduced and trained on the spatial ultrasound data for volumetric segmentation. Results demonstrate robust segmentation performance from Calyo Pulse sensors, with potential for further improvement through larger datasets, refined ground truth, and weighted loss functions. Importantly, this study highlights 3D ultrasound sensing as a promising complementary modality for reliable autonomy.
Until open-world foundation models match the performance of specialized approaches, the effectiveness of deep learning models remains heavily dependent on dataset availability. Training data must align not only with the target object categories but also with the sensor characteristics and modalities. To bridge the gap between available datasets and deployment domains, domain adaptation strategies are widely used. In this work, we propose a novel approach to transferring sensor-specific knowledge from an image dataset to LiDAR, an entirely different sensing domain. Our method XD-MAP leverages detections from a neural network on camera images to create a semantic parametric map. The map elements are modeled to produce pseudo labels in the target domain without any manual annotation effort. Unlike previous domain transfer approaches, our method does not require direct overlap between sensors and enables extending the angular perception range from a front-view camera to a full 360 view. On our large-scale road feature dataset, XD-MAP outperforms single shot baseline approaches by +19.5 mIoU for 2D semantic segmentation, +19.5 PQth for 2D panoptic segmentation, and +32.3 mIoU in 3D semantic segmentation. The results demonstrate the effectiveness of our approach achieving strong performance on LiDAR data without any manual labeling.
Indoor environments evolve as objects move, appear, or disappear. Capturing these dynamics requires maintaining temporally consistent instance identities across intermittently captured 3D scans, even when changes are unobserved. We introduce and formalize the task of temporally sparse 4D indoor semantic instance segmentation (SIS), which jointly segments, identifies, and temporally associates object instances. This setting poses a challenge for existing 3DSIS methods, which require a discrete matching step due to their lack of temporal reasoning, and for 4D LiDAR approaches, which perform poorly due to their reliance on high-frequency temporal measurements that are uncommon in the longer-horizon evolution of indoor environments. We propose ReScene4D, a novel method that adapts 3DSIS architectures for 4DSIS without needing dense observations. It explores strategies to share information across observations, demonstrating that this shared context not only enables consistent instance tracking but also improves standard 3DSIS quality. To evaluate this task, we define a new metric, t-mAP, that extends mAP to reward temporal identity consistency. ReScene4D achieves state-of-the-art performance on the 3RScan dataset, establishing a new benchmark for understanding evolving indoor scenes.
In complex environments, autonomous robot navigation and environmental perception pose higher requirements for SLAM technology. This paper presents a novel method for semantically enhancing 3D point cloud maps with thermal information. By first performing pixel-level fusion of visible and infrared images, the system projects real-time LiDAR point clouds onto this fused image stream. It then segments heat source features in the thermal channel to instantly identify high temperature targets and applies this temperature information as a semantic layer on the final 3D map. This approach generates maps that not only have accurate geometry but also possess a critical semantic understanding of the environment, making it highly valuable for specific applications like rapid disaster assessment and industrial preventive maintenance.
Unlabeled LiDAR logs, in autonomous driving applications, are inherently a gold mine of dense 3D geometry hiding in plain sight - yet they are almost useless without human labels, highlighting a dominant cost barrier for autonomous-perception research. In this work we tackle this bottleneck by leveraging temporal-geometric consistency across LiDAR sweeps to lift and fuse cues from text and 2D vision foundation models directly into 3D, without any manual input. We introduce an unsupervised multi-modal pseudo-labeling method relying on strong geometric priors learned from temporally accumulated LiDAR maps, alongside with a novel iterative update rule that enforces joint geometric-semantic consistency, and vice-versa detecting moving objects from inconsistencies. Our method simultaneously produces 3D semantic labels, 3D bounding boxes, and dense LiDAR scans, demonstrating robust generalization across three datasets. We experimentally validate that our method compares favorably to existing semantic segmentation and object detection pseudo-labeling methods, which often require additional manual supervision. We confirm that even a small fraction of our geometrically consistent, densified LiDAR improves depth prediction by 51.5% and 22.0% MAE in the 80-150 and 150-250 meters range, respectively.
Monocular 3D object detection offers a low-cost alternative to LiDAR, yet remains less accurate due to the difficulty of estimating metric depth from a single image. We systematically evaluate how depth backbones and feature engineering affect a monocular Pseudo-LiDAR pipeline on the KITTI validation split. Specifically, we compare NeWCRFs (supervised metric depth) against Depth Anything V2 Metric-Outdoor (Base) under an identical pseudo-LiDAR generation and PointRCNN detection protocol. NeWCRFs yields stronger downstream 3D detection, achieving 10.50\% AP$_{3D}$ at IoU$=0.7$ on the Moderate split using grayscale intensity (Exp~2). We further test point-cloud augmentations using appearance cues (grayscale intensity) and semantic cues (instance segmentation confidence). Contrary to the expectation that semantics would substantially close the gap, these features provide only marginal gains, and mask-based sampling can degrade performance by removing contextual geometry. Finally, we report a depth-accuracy-versus-distance diagnostic using ground-truth 2D boxes (including Ped/Cyc), highlighting that coarse depth correctness does not fully predict strict 3D IoU. Overall, under an off-the-shelf LiDAR detector, depth-backbone choice and geometric fidelity dominate performance, outweighing secondary feature injection.
Accurate, up-to-date sidewalk data is essential for building accessible and inclusive pedestrian infrastructure, yet current approaches to data collection are often costly, fragmented, and difficult to scale. We introduce iOSPointMapper, a mobile application that enables real-time, privacy-conscious sidewalk mapping on the ground, using recent-generation iPhones and iPads. The system leverages on-device semantic segmentation, LiDAR-based depth estimation, and fused GPS/IMU data to detect and localize sidewalk-relevant features such as traffic signs, traffic lights and poles. To ensure transparency and improve data quality, iOSPointMapper incorporates a user-guided annotation interface for validating system outputs before submission. Collected data is anonymized and transmitted to the Transportation Data Exchange Initiative (TDEI), where it integrates seamlessly with broader multimodal transportation datasets. Detailed evaluations of the system's feature detection and spatial mapping performance reveal the application's potential for enhanced pedestrian mapping. Together, these capabilities offer a scalable and user-centered approach to closing critical data gaps in pedestrian
Understanding road scenes for visual perception remains crucial for intelligent self-driving cars. In particular, it is desirable to detect unexpected small road hazards reliably in real-time, especially under varying adverse conditions (e.g., weather and daylight). However, existing road driving datasets provide large-scale images acquired in either normal or adverse scenarios only, and often do not contain the road obstacles captured in the same visual domain as for the other classes. To address this, we introduce a new dataset called AVOID, the Adverse Visual Conditions Dataset, for real-time obstacle detection collected in a simulated environment. AVOID consists of a large set of unexpected road obstacles located along each path captured under various weather and time conditions. Each image is coupled with the corresponding semantic and depth maps, raw and semantic LiDAR data, and waypoints, thereby supporting most visual perception tasks. We benchmark the results on high-performing real-time networks for the obstacle detection task, and also propose and conduct ablation studies using a comprehensive multi-task network for semantic segmentation, depth and waypoint prediction tasks.