Abstract:Existing domain generalization methods for LiDAR semantic segmentation under adverse weather struggle to accurately predict "things" categories compared to "stuff" categories. In typical driving scenes, "things" categories can be dynamic and associated with higher collision risks, making them crucial for safe navigation and planning. Recognizing the importance of "things" categories, we identify their performance drop as a serious bottleneck in existing approaches. We observed that adverse weather induces degradation of semantic-level features and both corruption of local features, leading to a misprediction of "things" as "stuff". To mitigate these corruptions, we suggest our method, NTN - segmeNt Things for No-accident. To address semantic-level feature corruption, we bind each point feature to its superclass, preventing the misprediction of things classes into visually dissimilar categories. Additionally, to enhance robustness against local corruption caused by adverse weather, we define each LiDAR beam as a local region and propose a regularization term that aligns the clean data with its corrupted counterpart in feature space. NTN achieves state-of-the-art performance with a +2.6 mIoU gain on the SemanticKITTI-to-SemanticSTF benchmark and +7.9 mIoU on the SemanticPOSS-to-SemanticSTF benchmark. Notably, NTN achieves a +4.8 and +7.9 mIoU improvement on "things" classes, respectively, highlighting its effectiveness.
Abstract:We address the challenges of the semi-supervised LiDAR segmentation (SSLS) problem, particularly in low-budget scenarios. The two main issues in low-budget SSLS are the poor-quality pseudo-labels for unlabeled data, and the performance drops due to the significant imbalance between ground-truth and pseudo-labels. This imbalance leads to a vicious training cycle. To overcome these challenges, we leverage the spatio-temporal prior by recognizing the substantial overlap between temporally adjacent LiDAR scans. We propose a proximity-based label estimation, which generates highly accurate pseudo-labels for unlabeled data by utilizing semantic consistency with adjacent labeled data. Additionally, we enhance this method by progressively expanding the pseudo-labels from the nearest unlabeled scans, which helps significantly reduce errors linked to dynamic classes. Additionally, we employ a dual-branch structure to mitigate performance degradation caused by data imbalance. Experimental results demonstrate remarkable performance in low-budget settings (i.e., <= 5%) and meaningful improvements in normal budget settings (i.e., 5 - 50%). Finally, our method has achieved new state-of-the-art results on SemanticKITTI and nuScenes in semi-supervised LiDAR segmentation. With only 5% labeled data, it offers competitive results against fully-supervised counterparts. Moreover, it surpasses the performance of the previous state-of-the-art at 100% labeled data (75.2%) using only 20% of labeled data (76.0%) on nuScenes. The code is available on https://github.com/halbielee/PLE.