What is Human Parsing? Human parsing is the process of identifying, segmenting, and categorizing different parts of a human body in an image or video such as head, shoulders, knees, and toes.
Papers and Code
Sep 09, 2025
Abstract:Parse graphs boost human pose estimation (HPE) by integrating context and hierarchies, yet prior work mostly focuses on single modality modeling, ignoring the potential of multimodal fusion. Notably, language offers rich HPE priors like spatial relations for occluded scenes, but existing visual-language fusion via global feature integration weakens occluded region responses and causes alignment and location failures. To address this issue, we propose Parse Graph-based Visual-Language interaction (PGVL) with a core novel Guided Module (GM). In PGVL, low-level nodes focus on local features, maximizing the maintenance of responses in occluded areas and high-level nodes integrate global features to infer occluded or invisible parts. GM enables high semantic nodes to guide the feature update of low semantic nodes that have undergone cross attention. It ensuring effective fusion of diverse information. PGVL includes top-down decomposition and bottom-up composition. In the first stage, modality specific parse graphs are constructed. Next stage. recursive bidirectional cross-attention is used, purified by GM. We also design network based on PGVL. The PGVL and our network is validated on major pose estimation datasets. We will release the code soon.
Via

Sep 10, 2025
Abstract:InfluenceMap's LobbyMap Platform monitors the climate policy engagement of over 500 companies and 250 industry associations, assessing each entity's support or opposition to science-based policy pathways for achieving the Paris Agreement's goal of limiting global warming to 1.5{\deg}C. Although InfluenceMap has made progress with automating key elements of the analytical workflow, a significant portion of the assessment remains manual, making it time- and labor-intensive and susceptible to human error. We propose an AI-assisted framework to accelerate the monitoring of corporate climate policy engagement by leveraging Retrieval-Augmented Generation to automate the most time-intensive extraction of relevant evidence from large-scale textual data. Our evaluation shows that a combination of layout-aware parsing, the Nomic embedding model, and few-shot prompting strategies yields the best performance in extracting and classifying evidence from multilingual corporate documents. We conclude that while the automated RAG system effectively accelerates evidence extraction, the nuanced nature of the analysis necessitates a human-in-the-loop approach where the technology augments, rather than replaces, expert judgment to ensure accuracy.
Via

Aug 28, 2025
Abstract:The Deep Space Network (DSN) is NASA's largest network of antenna facilities that generate a large volume of multivariate time-series data. These facilities contain DSN antennas and transmitters that undergo degradation over long periods of time, which may cause costly disruptions to the data flow and threaten the earth-connection of dozens of spacecraft that rely on the Deep Space Network for their lifeline. The purpose of this study was to experiment with different methods that would be able to assist JPL engineers with directly pinpointing anomalies and equipment degradation through collected data, and continue conducting maintenance and operations of the DSN for future space missions around our universe. As such, we have researched various machine learning techniques that can fully reconstruct data through predictive analysis, and determine anomalous data entries within real-time datasets through statistical computations and thresholds. On top of the fully trained and tested machine learning models, we have also integrated the use of a reinforcement learning subsystem that classifies identified anomalies based on severity level and a Large Language Model that labels an explanation for each anomalous data entry, all of which can be improved and fine-tuned over time through human feedback/input. Specifically, for the DSN transmitters, we have also implemented a full data pipeline system that connects the data extraction, parsing, and processing workflow all together as there was no coherent program or script for performing these tasks before. Using this data pipeline system, we were able to then also connect the models trained from DSN antenna data, completing the data workflow for DSN anomaly detection. This was all wrapped around and further connected by an agentic AI system, where complex reasoning was utilized to determine the classifications and predictions of anomalous data.
Via

Aug 26, 2025
Abstract:We stress test monitoring systems for detecting covert misbehavior in autonomous LLM agents (e.g., secretly sharing private information). To this end, we systematize a monitor red teaming (MRT) workflow that incorporates: (1) varying levels of agent and monitor situational awareness; (2) distinct adversarial strategies to evade the monitor, such as prompt injection; and (3) two datasets and environments -- SHADE-Arena for tool-calling agents and our new CUA-SHADE-Arena, which extends TheAgentCompany, for computer-use agents. We run MRT on existing LLM monitor scaffoldings, which orchestrate LLMs and parse agent trajectories, alongside a new hybrid hierarchical-sequential scaffolding proposed in this work. Our empirical results yield three key findings. First, agent awareness dominates monitor awareness: an agent's knowledge that it is being monitored substantially degrades the monitor's reliability. On the contrary, providing the monitor with more information about the agent is less helpful than expected. Second, monitor scaffolding matters more than monitor awareness: the hybrid scaffolding consistently outperforms baseline monitor scaffolding, and can enable weaker models to reliably monitor stronger agents -- a weak-to-strong scaling effect. Third, in a human-in-the-loop setting where humans discuss with the LLM monitor to get an updated judgment for the agent's behavior, targeted human oversight is most effective; escalating only pre-flagged cases to human reviewers improved the TPR by approximately 15% at FPR = 0.01. Our work establishes a standard workflow for MRT, highlighting the lack of adversarial robustness for LLMs and humans when monitoring and detecting agent misbehavior. We release code, data, and logs to spur further research.
* 18 pages, 15 figures
Via

Aug 24, 2025
Abstract:Paraphrases are a vital tool to assist language understanding tasks such as question answering, style transfer, semantic parsing, and data augmentation tasks. Indic languages are complex in natural language processing (NLP) due to their rich morphological and syntactic variations, diverse scripts, and limited availability of annotated data. In this work, we present the L3Cube-MahaParaphrase Dataset, a high-quality paraphrase corpus for Marathi, a low resource Indic language, consisting of 8,000 sentence pairs, each annotated by human experts as either Paraphrase (P) or Non-paraphrase (NP). We also present the results of standard transformer-based BERT models on these datasets. The dataset and model are publicly shared at https://github.com/l3cube-pune/MarathiNLP
Via

Aug 18, 2025
Abstract:Large Language Models (LLMs) have demonstrated impressive fluency and task competence in conversational settings. However, their effectiveness in multi-session and long-term interactions is hindered by limited memory persistence. Typical retrieval-augmented generation (RAG) systems store dialogue history as dense vectors, which capture semantic similarity but neglect finer linguistic structures such as syntactic dependencies, discourse relations, and coreference links. We propose Semantic Anchoring, a hybrid agentic memory architecture that enriches vector-based storage with explicit linguistic cues to improve recall of nuanced, context-rich exchanges. Our approach combines dependency parsing, discourse relation tagging, and coreference resolution to create structured memory entries. Experiments on adapted long-term dialogue datasets show that semantic anchoring improves factual recall and discourse coherence by up to 18% over strong RAG baselines. We further conduct ablation studies, human evaluations, and error analysis to assess robustness and interpretability.
* Paper is currently in peer review
Via

Aug 06, 2025
Abstract:Embodied navigation is a fundamental capability of embodied intelligence, enabling robots to move and interact within physical environments. However, existing navigation tasks primarily focus on predefined object navigation or instruction following, which significantly differs from human needs in real-world scenarios involving complex, open-ended scenes. To bridge this gap, we introduce a challenging long-horizon navigation task that requires understanding high-level human instructions and performing spatial-aware object navigation in real-world environments. Existing embodied navigation methods struggle with such tasks due to their limitations in comprehending high-level human instructions and localizing objects with an open vocabulary. In this paper, we propose $NavA^3$, a hierarchical framework divided into two stages: global and local policies. In the global policy, we leverage the reasoning capabilities of Reasoning-VLM to parse high-level human instructions and integrate them with global 3D scene views. This allows us to reason and navigate to regions most likely to contain the goal object. In the local policy, we have collected a dataset of 1.0 million samples of spatial-aware object affordances to train the NaviAfford model (PointingVLM), which provides robust open-vocabulary object localization and spatial awareness for precise goal identification and navigation in complex environments. Extensive experiments demonstrate that $NavA^3$ achieves SOTA results in navigation performance and can successfully complete longhorizon navigation tasks across different robot embodiments in real-world settings, paving the way for universal embodied navigation. The dataset and code will be made available. Project website: https://NavigationA3.github.io/.
Via

Aug 08, 2025
Abstract:Human-robot interaction requires robots to process language incrementally, adapting their actions in real-time based on evolving speech input. Existing approaches to language-guided robot motion planning typically assume fully specified instructions, resulting in inefficient stop-and-replan behavior when corrections or clarifications occur. In this paper, we introduce a novel reasoning-based incremental parser which integrates an online motion planning algorithm within the cognitive architecture. Our approach enables continuous adaptation to dynamic linguistic input, allowing robots to update motion plans without restarting execution. The incremental parser maintains multiple candidate parses, leveraging reasoning mechanisms to resolve ambiguities and revise interpretations when needed. By combining symbolic reasoning with online motion planning, our system achieves greater flexibility in handling speech corrections and dynamically changing constraints. We evaluate our framework in real-world human-robot interaction scenarios, demonstrating online adaptions of goal poses, constraints, or task objectives. Our results highlight the advantages of integrating incremental language understanding with real-time motion planning for natural and fluid human-robot collaboration. The experiments are demonstrated in the accompanying video at www.acin.tuwien.ac.at/42d5.
* 8 pages, 9 figures, accepted at IROS 2025
Via

Aug 07, 2025
Abstract:While large language models (LLMs) have demonstrated remarkable performance on high-level semantic tasks, they often struggle with fine-grained, token-level understanding and structural reasoning--capabilities that are essential for applications requiring precision and control. We introduce TASE, a comprehensive benchmark designed to evaluate LLMs' ability to perceive and reason about token-level information across languages. TASE covers 10 tasks under two core categories: token awareness and structural understanding, spanning Chinese, English, and Korean, with a 35,927-instance evaluation set and a scalable synthetic data generation pipeline for training. Tasks include character counting, token alignment, syntactic structure parsing, and length constraint satisfaction. We evaluate over 30 leading commercial and open-source LLMs, including O3, Claude 4, Gemini 2.5 Pro, and DeepSeek-R1, and train a custom Qwen2.5-14B model using the GRPO training method. Results show that human performance significantly outpaces current LLMs, revealing persistent weaknesses in token-level reasoning. TASE sheds light on these limitations and provides a new diagnostic lens for future improvements in low-level language understanding and cross-lingual generalization. Our code and dataset are publicly available at https://github.com/cyzcz/Tase .
Via

Jul 22, 2025
Abstract:Accessing knowledge via multilingual natural-language interfaces is one of the emerging challenges in the field of information retrieval and related ones. Structured knowledge stored in knowledge graphs can be queried via a specific query language (e.g., SPARQL). Therefore, one needs to transform natural-language input into a query to fulfill an information need. Prior approaches mostly focused on combining components (e.g., rule-based or neural-based) that solve downstream tasks and come up with an answer at the end. We introduce mKGQAgent, a human-inspired framework that breaks down the task of converting natural language questions into SPARQL queries into modular, interpretable subtasks. By leveraging a coordinated LLM agent workflow for planning, entity linking, and query refinement - guided by an experience pool for in-context learning - mKGQAgent efficiently handles multilingual KGQA. Evaluated on the DBpedia- and Corporate-based KGQA benchmarks within the Text2SPARQL challenge 2025, our approach took first place among the other participants. This work opens new avenues for developing human-like reasoning systems in multilingual semantic parsing.
* During the final evaluation on the DBpedia- and Corporate-based KGQA
benchmarks within the Text2SPARQL challenge 2025, our approach took first
place among the other participants
Via
