Abstract:Sketching is a powerful tool for creating abstract images that are sparse but meaningful. Sketch understanding poses fundamental challenges for general-purpose vision algorithms because it requires robustness to the sparsity of sketches relative to natural visual inputs and because it demands tolerance for semantic ambiguity, as sketches can reliably evoke multiple meanings. While current vision algorithms have achieved high performance on a variety of visual tasks, it remains unclear to what extent they understand sketches in a human-like way. Here we introduce SEVA, a new benchmark dataset containing approximately 90K human-generated sketches of 128 object concepts produced under different time constraints, and thus systematically varying in sparsity. We evaluated a suite of state-of-the-art vision algorithms on their ability to correctly identify the target concept depicted in these sketches and to generate responses that are strongly aligned with human response patterns on the same sketch recognition task. We found that vision algorithms that better predicted human sketch recognition performance also better approximated human uncertainty about sketch meaning, but there remains a sizable gap between model and human response patterns. To explore the potential of models that emulate human visual abstraction in generative tasks, we conducted further evaluations of a recently developed sketch generation algorithm (Vinker et al., 2022) capable of generating sketches that vary in sparsity. We hope that public release of this dataset and evaluation protocol will catalyze progress towards algorithms with enhanced capacities for human-like visual abstraction.
Abstract:This study evaluates the potential of a large language model for aiding in generation of semantic feature norms - a critical tool for evaluating conceptual structure in cognitive science. Building from an existing human-generated dataset, we show that machine-verified norms capture aspects of conceptual structure beyond what is expressed in human norms alone, and better explain human judgments of semantic similarity amongst items that are distally related. The results suggest that LLMs can greatly enhance traditional methods of semantic feature norm verification, with implications for our understanding of conceptual representation in humans and machines.
Abstract:Semantic feature norms, lists of features that concepts do and do not possess, have played a central role in characterizing human conceptual knowledge, but require extensive human labor. Large language models (LLMs) offer a novel avenue for the automatic generation of such feature lists, but are prone to significant error. Here, we present a new method for combining a learned model of human lexical-semantics from limited data with LLM-generated data to efficiently generate high-quality feature norms.
Abstract:Neural network models of language have long been used as a tool for developing hypotheses about conceptual representation in the mind and brain. For many years, such use involved extracting vector-space representations of words and using distances among these to predict or understand human behavior in various semantic tasks. In contemporary language AIs, however, it is possible to interrogate the latent structure of conceptual representations using methods nearly identical to those commonly used with human participants. The current work uses two common techniques borrowed from cognitive psychology to estimate and compare lexical-semantic structure in both humans and a well-known AI, the DaVinci variant of GPT-3. In humans, we show that conceptual structure is robust to differences in culture, language, and method of estimation. Structures estimated from AI behavior, while individually fairly consistent with those estimated from human behavior, depend much more upon the particular task used to generate behavior responses--responses generated by the very same model in the two tasks yield estimates of conceptual structure that cohere less with one another than do human structure estimates. The results suggest one important way that knowledge inhering in contemporary AIs can differ from human cognition.