Abstract:Although CLIPScore is a powerful generic metric that captures the similarity between a text and an image, it fails to distinguish between a caption that is meant to complement the information in an image and a description that is meant to replace an image entirely, e.g., for accessibility. We address this shortcoming by updating the CLIP model with the Concadia dataset to assign higher scores to descriptions than captions using parameter efficient fine-tuning and a loss objective derived from work on causal interpretability. This model correlates with the judgements of blind and low-vision people while preserving transfer capabilities and has interpretable structure that sheds light on the caption--description distinction.
Abstract:Current visual question answering (VQA) models tend to be trained and evaluated on image-question pairs in isolation. However, the questions people ask are dependent on their informational needs and prior knowledge about the image content. To evaluate how situating images within naturalistic contexts shapes visual questions, we introduce CommVQA, a VQA dataset consisting of images, image descriptions, real-world communicative scenarios where the image might appear (e.g., a travel website), and follow-up questions and answers conditioned on the scenario. We show that CommVQA poses a challenge for current models. Providing contextual information to VQA models improves performance broadly, highlighting the relevance of situating systems within a communicative scenario.
Abstract:Referenceless metrics (e.g., CLIPScore) use pretrained vision--language models to assess image descriptions directly without costly ground-truth reference texts. Such methods can facilitate rapid progress, but only if they truly align with human preference judgments. In this paper, we introduce ContextRef, a benchmark for assessing referenceless metrics for such alignment. ContextRef has two components: human ratings along a variety of established quality dimensions, and ten diverse robustness checks designed to uncover fundamental weaknesses. A crucial aspect of ContextRef is that images and descriptions are presented in context, reflecting prior work showing that context is important for description quality. Using ContextRef, we assess a variety of pretrained models, scoring functions, and techniques for incorporating context. None of the methods is successful with ContextRef, but we show that careful fine-tuning yields substantial improvements. ContextRef remains a challenging benchmark though, in large part due to the challenge of context dependence.
Abstract:Visual question answering (VQA) has the potential to make the Internet more accessible in an interactive way, allowing people who cannot see images to ask questions about them. However, multiple studies have shown that people who are blind or have low-vision prefer image explanations that incorporate the context in which an image appears, yet current VQA datasets focus on images in isolation. We argue that VQA models will not fully succeed at meeting people's needs unless they take context into account. To further motivate and analyze the distinction between different contexts, we introduce Context-VQA, a VQA dataset that pairs images with contexts, specifically types of websites (e.g., a shopping website). We find that the types of questions vary systematically across contexts. For example, images presented in a travel context garner 2 times more "Where?" questions, and images on social media and news garner 2.8 and 1.8 times more "Who?" questions than the average. We also find that context effects are especially important when participants can't see the image. These results demonstrate that context affects the types of questions asked and that VQA models should be context-sensitive to better meet people's needs, especially in accessibility settings.
Abstract:Few images on the Web receive alt-text descriptions that would make them accessible to blind and low vision (BLV) users. Image-based NLG systems have progressed to the point where they can begin to address this persistent societal problem, but these systems will not be fully successful unless we evaluate them on metrics that guide their development correctly. Here, we argue against current referenceless metrics -- those that don't rely on human-generated ground-truth descriptions -- on the grounds that they do not align with the needs of BLV users. The fundamental shortcoming of these metrics is that they cannot take context into account, whereas contextual information is highly valued by BLV users. To substantiate these claims, we present a study with BLV participants who rated descriptions along a variety of dimensions. An in-depth analysis reveals that the lack of context-awareness makes current referenceless metrics inadequate for advancing image accessibility, requiring a rethinking of referenceless evaluation metrics for image-based NLG systems.
Abstract:Speakers' referential expressions often depart from communicative ideals in ways that help illuminate the nature of pragmatic language use. Patterns of overmodification, in which a speaker uses a modifier that is redundant given their communicative goal, have proven especially informative in this regard. It seems likely that these patterns are shaped by the environment a speaker is exposed to in complex ways. Unfortunately, systematically manipulating these factors during human language acquisition is impossible. In this paper, we propose to address this limitation by adopting neural networks (NN) as learning agents. By systematically varying the environments in which these agents are trained, while keeping the NN architecture constant, we show that overmodification is more likely with environmental features that are infrequent or salient. We show that these findings emerge naturally in the context of a probabilistic model of pragmatic communication.
Abstract:Distillation efforts have led to language models that are more compact and efficient without serious drops in performance. The standard approach to distillation trains a student model against two objectives: a task-specific objective (e.g., language modeling) and an imitation objective that encourages the hidden states of the student model to be similar to those of the larger teacher model. In this paper, we show that it is beneficial to augment distillation with a third objective that encourages the student to imitate the causal computation process of the teacher through interchange intervention training(IIT). IIT pushes the student model to become a causal abstraction of the teacher model - a simpler model with the same causal structure. IIT is fully differentiable, easily implemented, and combines flexibly with other objectives. Compared with standard distillation of BERT, distillation via IIT results in lower perplexity on Wikipedia (masked language modeling) and marked improvements on the GLUE benchmark (natural language understanding), SQuAD (question answering), and CoNLL-2003 (named entity recognition).
Abstract:In many areas, we have well-founded insights about causal structure that would be useful to bring into our trained models while still allowing them to learn in a data-driven fashion. To achieve this, we present the new method of interchange intervention training(IIT). In IIT, we (1)align variables in the causal model with representations in the neural model and (2) train a neural model to match the counterfactual behavior of the causal model on a base input when aligned representations in both models are set to be the value they would be for a second source input. IIT is fully differentiable, flexibly combines with other objectives, and guarantees that the target causal model is acausal abstraction of the neural model when its loss is minimized. We evaluate IIT on a structured vision task (MNIST-PVR) and a navigational instruction task (ReaSCAN). We compare IIT against multi-task training objectives and data augmentation. In all our experiments, IIT achieves the best results and produces neural models that are more interpretable in the sense that they realize the target causal model.
Abstract:The ability to compositionally map language to referents, relations, and actions is an essential component of language understanding. The recent gSCAN dataset (Ruis et al. 2020, NeurIPS) is an inspiring attempt to assess the capacity of models to learn this kind of grounding in scenarios involving navigational instructions. However, we show that gSCAN's highly constrained design means that it does not require compositional interpretation and that many details of its instructions and scenarios are not required for task success. To address these limitations, we propose ReaSCAN, a benchmark dataset that builds off gSCAN but requires compositional language interpretation and reasoning about entities and relations. We assess two models on ReaSCAN: a multi-modal baseline and a state-of-the-art graph convolutional neural model. These experiments show that ReaSCAN is substantially harder than gSCAN for both neural architectures. This suggests that ReaSCAN can serve as a valuable benchmark for advancing our understanding of models' compositional generalization and reasoning capabilities.
Abstract:Images have become an integral part of online media. This has enhanced self-expression and the dissemination of knowledge, but it poses serious accessibility challenges. Adequate textual descriptions are rare. Captions are more abundant, but they do not consistently provide the needed descriptive details, and systems trained on such texts inherit these shortcomings. To address this, we introduce the publicly available Wikipedia-based corpus Concadia, which consists of 96,918 images with corresponding English-language descriptions, captions, and surrounding context. We use Concadia to further characterize the commonalities and differences between descriptions and captions, and this leads us to the hypothesis that captions, while not substitutes for descriptions, can provide a useful signal for creating effective descriptions. We substantiate this hypothesis by showing that image captioning systems trained on Concadia benefit from having caption embeddings as part of their inputs. These experiments also begin to show how Concadia can be a powerful tool in addressing the underlying accessibility issues posed by image data.