Abstract:We present a novel multimodal preference dataset for creative tasks, consisting of over 250 million human ratings on more than 2.2 million captions, collected through crowdsourcing rating data for The New Yorker's weekly cartoon caption contest over the past eight years. This unique dataset supports the development and evaluation of multimodal large language models and preference-based fine-tuning algorithms for humorous caption generation. We propose novel benchmarks for judging the quality of model-generated captions, utilizing both GPT4 and human judgments to establish ranking-based evaluation strategies. Our experimental results highlight the limitations of current fine-tuning methods, such as RLHF and DPO, when applied to creative tasks. Furthermore, we demonstrate that even state-of-the-art models like GPT4 and Claude currently underperform top human contestants in generating humorous captions. As we conclude this extensive data collection effort, we release the entire preference dataset to the research community, fostering further advancements in AI humor generation and evaluation.
Abstract:This paper considers how interactions with AI algorithms can boost human creative thought. We employ a psychological task that demonstrates limits on human creativity, namely semantic feature generation: given a concept name, respondents must list as many of its features as possible. Human participants typically produce only a fraction of the features they know before getting "stuck." In experiments with humans and with a language AI (GPT-4) we contrast behavior in the standard task versus a variant in which participants can ask for algorithmically-generated hints. Algorithm choice is administered by a multi-armed bandit whose reward indicates whether the hint helped generating more features. Humans and the AI show similar benefits from hints, and remarkably, bandits learning from AI responses prefer the same prompting strategy as those learning from human behavior. The results suggest that strategies for boosting human creativity via computer interactions can be learned by bandits run on groups of simulated participants.
Abstract:Accurately simulating human opinion dynamics is crucial for understanding a variety of societal phenomena, including polarization and the spread of misinformation. However, the agent-based models (ABMs) commonly used for such simulations lack fidelity to human behavior. We propose a new approach to simulating opinion dynamics based on populations of Large Language Models (LLMs). Our findings reveal a strong inherent bias in LLM agents towards accurate information, leading to consensus in line with scientific reality. However, this bias limits the simulation of individuals with resistant views on issues like climate change. After inducing confirmation bias through prompt engineering, we observed opinion fragmentation in line with existing agent-based research. These insights highlight the promise and limitations of LLM agents in this domain and suggest a path forward: refining LLMs with real-world discourse to better simulate the evolution of human beliefs.
Abstract:This study investigates the potential of Large Language Models (LLMs) to simulate human group dynamics, particularly within politically charged contexts. We replicate the Wisdom of Partisan Crowds phenomenon using LLMs to role-play as Democrat and Republican personas, engaging in a structured interaction akin to human group study. Our approach evaluates how agents' responses evolve through social influence. Our key findings indicate that LLM agents role-playing detailed personas and without Chain-of-Thought (CoT) reasoning closely align with human behaviors, while having CoT reasoning hurts the alignment. However, incorporating explicit biases into agent prompts does not necessarily enhance the wisdom of partisan crowds. Moreover, fine-tuning LLMs with human data shows promise in achieving human-like behavior but poses a risk of overfitting certain behaviors. These findings show the potential and limitations of using LLM agents in modeling human group phenomena.
Abstract:This study evaluates the potential of a large language model for aiding in generation of semantic feature norms - a critical tool for evaluating conceptual structure in cognitive science. Building from an existing human-generated dataset, we show that machine-verified norms capture aspects of conceptual structure beyond what is expressed in human norms alone, and better explain human judgments of semantic similarity amongst items that are distally related. The results suggest that LLMs can greatly enhance traditional methods of semantic feature norm verification, with implications for our understanding of conceptual representation in humans and machines.
Abstract:Semantic feature norms, lists of features that concepts do and do not possess, have played a central role in characterizing human conceptual knowledge, but require extensive human labor. Large language models (LLMs) offer a novel avenue for the automatic generation of such feature lists, but are prone to significant error. Here, we present a new method for combining a learned model of human lexical-semantics from limited data with LLM-generated data to efficiently generate high-quality feature norms.
Abstract:Neural network models of language have long been used as a tool for developing hypotheses about conceptual representation in the mind and brain. For many years, such use involved extracting vector-space representations of words and using distances among these to predict or understand human behavior in various semantic tasks. In contemporary language AIs, however, it is possible to interrogate the latent structure of conceptual representations using methods nearly identical to those commonly used with human participants. The current work uses two common techniques borrowed from cognitive psychology to estimate and compare lexical-semantic structure in both humans and a well-known AI, the DaVinci variant of GPT-3. In humans, we show that conceptual structure is robust to differences in culture, language, and method of estimation. Structures estimated from AI behavior, while individually fairly consistent with those estimated from human behavior, depend much more upon the particular task used to generate behavior responses--responses generated by the very same model in the two tasks yield estimates of conceptual structure that cohere less with one another than do human structure estimates. The results suggest one important way that knowledge inhering in contemporary AIs can differ from human cognition.