Abstract:A significant challenge facing current optical flow and stereo methods is the difficulty in generalizing them well to the real world. This is mainly due to the high costs required to produce datasets, and the limitations of existing self-supervised methods on fuzzy results and complex model training problems. To address the above challenges, we propose a unified self-supervised generalization framework for optical flow and stereo tasks: Self-Assessed Generation (SAG). Unlike previous self-supervised methods, SAG is data-driven, using advanced reconstruction techniques to construct a reconstruction field from RGB images and generate datasets based on it. Afterward, we quantified the confidence level of the generated results from multiple perspectives, such as reconstruction field distribution, geometric consistency, and structural similarity, to eliminate inevitable defects in the generation process. We also designed a 3D flight foreground automatic rendering pipeline in SAG to encourage the network to learn occlusion and motion foreground. Experimentally, because SAG does not involve changes to methods or loss functions, it can directly self-supervised train the state-of-the-art deep networks, greatly improving the generalization performance of self-supervised methods on current mainstream optical flow and stereo-matching datasets. Compared to previous training modes, SAG is more generalized, cost-effective, and accurate.
Abstract:Group re-identification (re-ID) aims to match groups with the same people under different cameras, mainly involves the challenges of group members and layout changes well. Most existing methods usually use the k-nearest neighbor algorithm to update node features to consider changes in group membership, but these methods cannot solve the problem of group layout changes. To this end, we propose a novel vision transformer based random walk framework for group re-ID. Specifically, we design a vision transformer based on a monocular depth estimation algorithm to construct a graph through the average depth value of pedestrian features to fully consider the impact of camera distance on group members relationships. In addition, we propose a random walk module to reconstruct the graph by calculating affinity scores between target and gallery images to remove pedestrians who do not belong to the current group. Experimental results show that our framework is superior to most methods.
Abstract:In recent years, the development of instance segmentation has garnered significant attention in a wide range of applications. However, the training of a fully-supervised instance segmentation model requires costly both instance-level and pixel-level annotations. In contrast, weakly-supervised instance segmentation methods (i.e., with image-level class labels or point labels) struggle to satisfy the accuracy and recall requirements of practical scenarios. In this paper, we propose a novel paradigm for instance segmentation called training-free instance segmentation (TFISeg), which achieves instance segmentation results from image masks predicted using off-the-shelf semantic segmentation models. TFISeg does not require training a semantic or/and instance segmentation model and avoids the need for instance-level image annotations. Therefore, it is highly efficient. Specifically, we first obtain a semantic segmentation mask of the input image via a trained semantic segmentation model. Then, we calculate a displacement field vector for each pixel based on the segmentation mask, which can indicate representations belonging to the same class but different instances, i.e., obtaining the instance-level object information. Finally, instance segmentation results are obtained after being refined by a learnable category-agnostic object boundary branch. Extensive experimental results on two challenging datasets and representative semantic segmentation baselines (including CNNs and Transformers) demonstrate that TFISeg can achieve competitive results compared to the state-of-the-art fully-supervised instance segmentation methods without the need for additional human resources or increased computational costs. The code is available at: TFISeg
Abstract:Person re-identification (re-ID) tackles the problem of matching person images with the same identity from different cameras. In practical applications, due to the differences in camera performance and distance between cameras and persons of interest, captured person images usually have various resolutions. We name this problem as Cross-Resolution Person Re-identification which brings a great challenge for matching correctly. In this paper, we propose a Deep High-Resolution Pseudo-Siamese Framework (PS-HRNet) to solve the above problem. Specifically, in order to restore the resolution of low-resolution images and make reasonable use of different channel information of feature maps, we introduce and innovate VDSR module with channel attention (CA) mechanism, named as VDSR-CA. Then we reform the HRNet by designing a novel representation head to extract discriminating features, named as HRNet-ReID. In addition, a pseudo-siamese framework is constructed to reduce the difference of feature distributions between low-resolution images and high-resolution images. The experimental results on five cross-resolution person datasets verify the effectiveness of our proposed approach. Compared with the state-of-the-art methods, our proposed PS-HRNet improves 3.4\%, 6.2\%, 2.5\%,1.1\% and 4.2\% at Rank-1 on MLR-Market-1501, MLR-CUHK03, MLR-VIPeR, MLR-DukeMTMC-reID, and CAVIAR datasets, respectively. Our code is available at \url{https://github.com/zhguoqing}.
Abstract:Text-based person search is a sub-task in the field of image retrieval, which aims to retrieve target person images according to a given textual description. The significant feature gap between two modalities makes this task very challenging. Many existing methods attempt to utilize local alignment to address this problem in the fine-grained level. However, most relevant methods introduce additional models or complicated training and evaluation strategies, which are hard to use in realistic scenarios. In order to facilitate the practical application, we propose a simple but effective end-to-end learning framework for text-based person search named TIPCB (i.e., Text-Image Part-based Convolutional Baseline). Firstly, a novel dual-path local alignment network structure is proposed to extract visual and textual local representations, in which images are segmented horizontally and texts are aligned adaptively. Then, we propose a multi-stage cross-modal matching strategy, which eliminates the modality gap from three feature levels, including low level, local level and global level. Extensive experiments are conducted on the widely-used benchmark dataset (CUHK-PEDES) and verify that our method outperforms the state-of-the-art methods by 3.69%, 2.95% and 2.31% in terms of Top-1, Top-5 and Top-10. Our code has been released in https://github.com/OrangeYHChen/TIPCB.
Abstract:Recently, video-based person re-identification (re-ID) has drawn increasing attention in compute vision community because of its practical application prospects. Due to the inaccurate person detections and pose changes, pedestrian misalignment significantly increases the difficulty of feature extraction and matching. To address this problem, in this paper, we propose a \textbf{R}eference-\textbf{A}ided \textbf{P}art-\textbf{A}ligned (\textbf{RAPA}) framework to disentangle robust features of different parts. Firstly, in order to obtain better references between different videos, a pose-based reference feature learning module is introduced. Secondly, an effective relation-based part feature disentangling module is explored to align frames within each video. By means of using both modules, the informative parts of pedestrian in videos are well aligned and more discriminative feature representation is generated. Comprehensive experiments on three widely-used benchmarks, i.e. iLIDS-VID, PRID-2011 and MARS datasets verify the effectiveness of the proposed framework. Our code will be made publicly available.
Abstract:Extracting effective and discriminative features is very important for addressing the challenging person re-identification (re-ID) task. Prevailing deep convolutional neural networks (CNNs) usually use high-level features for identifying pedestrian. However, some essential spatial information resided in low-level features such as shape, texture and color will be lost when learning the high-level features, due to extensive padding and pooling operations in the training stage. In addition, most existing person re-ID methods are mainly based on hand-craft bounding boxes where images are precisely aligned. It is unrealistic in practical applications, since the exploited object detection algorithms often produce inaccurate bounding boxes. This will inevitably degrade the performance of existing algorithms. To address these problems, we put forward a novel person re-ID model that fuses high- and low-level embeddings to reduce the information loss caused in learning high-level features. Then we divide the fused embedding into several parts and reconnect them to obtain the global feature and more significant local features, so as to alleviate the affect caused by the inaccurate bounding boxes. In addition, we also introduce the spatial and channel attention mechanisms in our model, which aims to mine more discriminative features related to the target. Finally, we reconstruct the feature extractor to ensure that our model can obtain more richer and robust features. Extensive experiments display the superiority of our approach compared with existing approaches. Our code is available at https://github.com/libraflower/MutipleFeature-for-PRID.
Abstract:This paper presents an efficient approach to image segmentation that approximates the piecewise-smooth (PS) functional in [12] with explicit solutions. By rendering some rational constraints on the initial conditions and the final solutions of the PS functional, we propose two novel formulations which can be approximated to be the explicit solutions of the evolution partial differential equations (PDEs) of the PS model, in which only one PDE needs to be solved efficiently. Furthermore, an energy term that regularizes the level set function to be a signed distance function is incorporated into our evolution formulation, and the time-consuming re-initialization is avoided. Experiments on synthetic and real images show that our method is more efficient than both the PS model and the local binary fitting (LBF) model [4], while having similar segmentation accuracy as the LBF model.