Abstract:How to mitigate negative transfer in transfer learning is a long-standing and challenging issue, especially in the application of medical image segmentation. Existing methods for reducing negative transfer focus on classification or regression tasks, ignoring the non-uniform negative transfer risk in different image regions. In this work, we propose a simple yet effective weighted fine-tuning method that directs the model's attention towards regions with significant transfer risk for medical semantic segmentation. Specifically, we compute a transferability-guided transfer risk map to quantify the transfer hardness for each pixel and the potential risks of negative transfer. During the fine-tuning phase, we introduce a map-weighted loss function, normalized with image foreground size to counter class imbalance. Extensive experiments on brain segmentation datasets show our method significantly improves the target task performance, with gains of 4.37% on FeTS2021 and 1.81% on iSeg2019, avoiding negative transfer across modalities and tasks. Meanwhile, a 2.9% gain under a few-shot scenario validates the robustness of our approach.
Abstract:Recent advances in foundation models have brought promising results in computer vision, including medical image segmentation. Fine-tuning foundation models on specific low-resource medical tasks has become a standard practice. However, ensuring reliable and robust model adaptation when the target task has a large domain gap and few annotated samples remains a challenge. Previous few-shot domain adaptation (FSDA) methods seek to bridge the distribution gap between source and target domains by utilizing auxiliary data. The selection and scheduling of auxiliaries are often based on heuristics, which can easily cause negative transfer. In this work, we propose an Active and Sequential domain AdaPtation (ASAP) framework for dynamic auxiliary dataset selection in FSDA. We formulate FSDA as a multi-armed bandit problem and derive an efficient reward function to prioritize training on auxiliary datasets that align closely with the target task, through a single-round fine-tuning. Empirical validation on diverse medical segmentation datasets demonstrates that our method achieves favorable segmentation performance, significantly outperforming the state-of-the-art FSDA methods, achieving an average gain of 27.75% on MRI and 7.52% on CT datasets in Dice score. Code is available at the git repository: https://github.com/techicoco/ASAP.
Abstract:Continuum instruments are integral to robot-assisted minimally invasive surgery (MIS), with tendon-driven mechanisms being the most common. Real-time tension feedback is crucial for precise articulation but remains a challenge in compact actuation unit designs. Additionally, accurate shape and external force sensing of continuum instruments are essential for advanced control and manipulation. This paper presents a compact and modular actuation unit that integrates a torque cell directly into the pulley module to provide real-time tension feedback. Building on this unit, we propose a novel shape-force sensing framework that incorporates polynomial curvature kinematics to accurately model non-constant curvature. The framework combines pose sensor measurements at the instrument tip and actuation tension feedback at the developed actuation unit. Experimental results demonstrate the improved performance of the proposed shape-force sensing framework in terms of shape reconstruction accuracy and force estimation reliability compared to conventional constant-curvature methods.
Abstract:Traditional equation-driven hydrological models often struggle to accurately predict streamflow in challenging regional Earth systems like the Tibetan Plateau, while hybrid and existing algorithm-driven models face difficulties in interpreting hydrological behaviors. This work introduces HydroTrace, an algorithm-driven, data-agnostic model that substantially outperforms these approaches, achieving a Nash-Sutcliffe Efficiency of 98% and demonstrating strong generalization on unseen data. Moreover, HydroTrace leverages advanced attention mechanisms to capture spatial-temporal variations and feature-specific impacts, enabling the quantification and spatial resolution of streamflow partitioning as well as the interpretation of hydrological behaviors such as glacier-snow-streamflow interactions and monsoon dynamics. Additionally, a large language model (LLM)-based application allows users to easily understand and apply HydroTrace's insights for practical purposes. These advancements position HydroTrace as a transformative tool in hydrological and broader Earth system modeling, offering enhanced prediction accuracy and interpretability.
Abstract:Summarizing patient clinical notes is vital for reducing documentation burdens. Current manual summarization makes medical staff struggle. We propose an automatic method using LLMs, but long inputs cause LLMs to lose context, reducing output quality especially in small size model. We used a 7B model, open-calm-7b, enhanced with Native Bayes Context Extend and a redesigned decoding mechanism to reference one sentence at a time, keeping inputs within context windows, 2048 tokens. Our improved model achieved near parity with Google's over 175B Gemini on ROUGE-L metrics with 200 samples, indicating strong performance using less resources, enhancing automated EMR summarization feasibility.
Abstract:The medical image processing field often encounters the critical issue of scarce annotated data. Transfer learning has emerged as a solution, yet how to select an adequate source task and effectively transfer the knowledge to the target task remains challenging. To address this, we propose a novel sequential transfer scheme with a task affinity metric tailored for medical images. Considering the characteristics of medical image segmentation tasks, we analyze the image and label similarity between tasks and compute the task affinity scores, which assess the relatedness among tasks. Based on this, we select appropriate source tasks and develop an effective sequential transfer strategy by incorporating intermediate source tasks to gradually narrow the domain discrepancy and minimize the transfer cost. Thereby we identify the best sequential transfer path for the given target task. Extensive experiments on three MRI medical datasets, FeTS 2022, iSeg-2019, and WMH, demonstrate the efficacy of our method in finding the best source sequence. Compared with directly transferring from a single source task, the sequential transfer results underline a significant improvement in target task performance, achieving an average of 2.58% gain in terms of segmentation Dice score, notably, 6.00% for FeTS 2022. Code is available at the git repository.
Abstract:Group re-identification (re-ID) aims to match groups with the same people under different cameras, mainly involves the challenges of group members and layout changes well. Most existing methods usually use the k-nearest neighbor algorithm to update node features to consider changes in group membership, but these methods cannot solve the problem of group layout changes. To this end, we propose a novel vision transformer based random walk framework for group re-ID. Specifically, we design a vision transformer based on a monocular depth estimation algorithm to construct a graph through the average depth value of pedestrian features to fully consider the impact of camera distance on group members relationships. In addition, we propose a random walk module to reconstruct the graph by calculating affinity scores between target and gallery images to remove pedestrians who do not belong to the current group. Experimental results show that our framework is superior to most methods.
Abstract:Point clouds are crucial for capturing three-dimensional data but often suffer from incompleteness due to limitations such as resolution and occlusion. Traditional methods typically rely on point-based approaches within discriminative frameworks for point cloud completion. In this paper, we introduce \textbf{Diffusion-Occ}, a novel framework for Diffusion Point Cloud Completion. Diffusion-Occ utilizes a two-stage coarse-to-fine approach. In the first stage, the Coarse Density Voxel Prediction Network (CDNet) processes partial points to predict coarse density voxels, streamlining global feature extraction through voxel classification, as opposed to previous regression-based methods. In the second stage, we introduce the Occupancy Generation Network (OccGen), a conditional occupancy diffusion model based on a transformer architecture and enhanced by our Point-Voxel Fuse (PVF) block. This block integrates coarse density voxels with partial points to leverage both global and local features for comprehensive completion. By thresholding the occupancy field, we convert it into a complete point cloud. Additionally, our method employs diverse training mixtures and efficient diffusion parameterization to enable effective one-step sampling during both training and inference. Experimental results demonstrate that Diffusion-Occ outperforms existing discriminative and generative methods.
Abstract:As the rapid development of computer vision and the emergence of powerful network backbones and architectures, the application of deep learning in medical imaging has become increasingly significant. Unlike natural images, medical images lack huge volumes of data but feature more modalities, making it difficult to train a general model that has satisfactory performance across various datasets. In practice, practitioners often suffer from manually creating and testing models combining independent backbones and architectures, which is a laborious and time-consuming process. We propose Flemme, a FLExible and Modular learning platform for MEdical images. Our platform separates encoders from the model architectures so that different models can be constructed via various combinations of supported encoders and architectures. We construct encoders using building blocks based on convolution, transformer, and state-space model (SSM) to process both 2D and 3D image patches. A base architecture is implemented following an encoder-decoder style, with several derived architectures for image segmentation, reconstruction, and generation tasks. In addition, we propose a general hierarchical architecture incorporating a pyramid loss to optimize and fuse vertical features. Experiments demonstrate that this simple design leads to an average improvement of 5.60% in Dice score and 7.81% in mean interaction of units (mIoU) for segmentation models, as well as an enhancement of 5.57% in peak signal-to-noise ratio (PSNR) and 8.22% in structural similarity (SSIM) for reconstruction models. We further utilize Flemme as an analytical tool to assess the effectiveness and efficiency of various encoders across different tasks. Code is available at https://github.com/wlsdzyzl/flemme.
Abstract:Budget allocation of marketplace levers, such as incentives for drivers and promotions for riders, has long been a technical and business challenge at Uber; understanding lever budget changes' impact and estimating cost efficiency to achieve predefined budgets is crucial, with the goal of optimal allocations that maximize business value; we introduce an end-to-end machine learning and optimization procedure to automate budget decision-making for cities, relying on feature store, model training and serving, optimizers, and backtesting; proposing state-of-the-art deep learning (DL) estimator based on S-Learner and a novel tensor B-Spline regression model, we solve high-dimensional optimization with ADMM and primal-dual interior point convex optimization, substantially improving Uber's resource allocation efficiency.