Abstract:Knowledge Graphs (KGs) are crucial in the field of artificial intelligence and are widely used in downstream tasks, such as question-answering (QA). The construction of KGs typically requires significant effort from domain experts. Large Language Models (LLMs) have recently been used for Knowledge Graph Construction (KGC). However, most existing approaches focus on a local perspective, extracting knowledge triplets from individual sentences or documents, missing a fusion process to combine the knowledge in a global KG. This work introduces Graphusion, a zero-shot KGC framework from free text. It contains three steps: in Step 1, we extract a list of seed entities using topic modeling to guide the final KG includes the most relevant entities; in Step 2, we conduct candidate triplet extraction using LLMs; in Step 3, we design the novel fusion module that provides a global view of the extracted knowledge, incorporating entity merging, conflict resolution, and novel triplet discovery. Results show that Graphusion achieves scores of 2.92 and 2.37 out of 3 for entity extraction and relation recognition, respectively. Moreover, we showcase how Graphusion could be applied to the Natural Language Processing (NLP) domain and validate it in an educational scenario. Specifically, we introduce TutorQA, a new expert-verified benchmark for QA, comprising six tasks and a total of 1,200 QA pairs. Using the Graphusion-constructed KG, we achieve a significant improvement on the benchmark, for example, a 9.2% accuracy improvement on sub-graph completion.
Abstract:Pre-trained transformer models have shown great promise in various natural language processing tasks, including personalized news recommendations. To harness the power of these models, we introduce Transformers4NewsRec, a new Python framework built on the \textbf{Transformers} library. This framework is designed to unify and compare the performance of various news recommendation models, including deep neural networks and graph-based models. Transformers4NewsRec offers flexibility in terms of model selection, data preprocessing, and evaluation, allowing both quantitative and qualitative analysis.
Abstract:Large Language Models~(LLMs) have demonstrated capabilities across various applications but face challenges such as hallucination, limited reasoning abilities, and factual inconsistencies, especially when tackling complex, domain-specific tasks like question answering~(QA). While Knowledge Graphs~(KGs) have been shown to help mitigate these issues, research on the integration of LLMs with background KGs remains limited. In particular, user accessibility and the flexibility of the underlying KG have not been thoroughly explored. We introduce AGENTiGraph (Adaptive Generative ENgine for Task-based Interaction and Graphical Representation), a platform for knowledge management through natural language interaction. It integrates knowledge extraction, integration, and real-time visualization. AGENTiGraph employs a multi-agent architecture to dynamically interpret user intents, manage tasks, and integrate new knowledge, ensuring adaptability to evolving user requirements and data contexts. Our approach demonstrates superior performance in knowledge graph interactions, particularly for complex domain-specific tasks. Experimental results on a dataset of 3,500 test cases show AGENTiGraph significantly outperforms state-of-the-art zero-shot baselines, achieving 95.12\% accuracy in task classification and 90.45\% success rate in task execution. User studies corroborate its effectiveness in real-world scenarios. To showcase versatility, we extended AGENTiGraph to legislation and healthcare domains, constructing specialized KGs capable of answering complex queries in legal and medical contexts.
Abstract:Knowledge graphs (KGs) are crucial in the field of artificial intelligence and are widely applied in downstream tasks, such as enhancing Question Answering (QA) systems. The construction of KGs typically requires significant effort from domain experts. Recently, Large Language Models (LLMs) have been used for knowledge graph construction (KGC), however, most existing approaches focus on a local perspective, extracting knowledge triplets from individual sentences or documents. In this work, we introduce Graphusion, a zero-shot KGC framework from free text. The core fusion module provides a global view of triplets, incorporating entity merging, conflict resolution, and novel triplet discovery. We showcase how Graphusion could be applied to the natural language processing (NLP) domain and validate it in the educational scenario. Specifically, we introduce TutorQA, a new expert-verified benchmark for graph reasoning and QA, comprising six tasks and a total of 1,200 QA pairs. Our evaluation demonstrates that Graphusion surpasses supervised baselines by up to 10% in accuracy on link prediction. Additionally, it achieves average scores of 2.92 and 2.37 out of 3 in human evaluations for concept entity extraction and relation recognition, respectively.
Abstract:Large Language Models (LLMs) have significantly advanced healthcare innovation on generation capabilities. However, their application in real clinical settings is challenging due to potential deviations from medical facts and inherent biases. In this work, we develop an augmented LLM framework, KG-Rank, which leverages a medical knowledge graph (KG) with ranking and re-ranking techniques, aiming to improve free-text question-answering (QA) in the medical domain. Specifically, upon receiving a question, we initially retrieve triplets from a medical KG to gather factual information. Subsequently, we innovatively apply ranking methods to refine the ordering of these triplets, aiming to yield more precise answers. To the best of our knowledge, KG-Rank is the first application of ranking models combined with KG in medical QA specifically for generating long answers. Evaluation of four selected medical QA datasets shows that KG-Rank achieves an improvement of over 18% in the ROUGE-L score. Moreover, we extend KG-Rank to open domains, where it realizes a 14% improvement in ROUGE-L, showing the effectiveness and potential of KG-Rank.
Abstract:Making legal knowledge accessible to non-experts is crucial for enhancing general legal literacy and encouraging civic participation in democracy. However, legal documents are often challenging to understand for people without legal backgrounds. In this paper, we present a novel application of large language models (LLMs) in legal education to help non-experts learn intricate legal concepts through storytelling, an effective pedagogical tool in conveying complex and abstract concepts. We also introduce a new dataset LegalStories, which consists of 295 complex legal doctrines, each accompanied by a story and a set of multiple-choice questions generated by LLMs. To construct the dataset, we experiment with various LLMs to generate legal stories explaining these concepts. Furthermore, we use an expert-in-the-loop method to iteratively design multiple-choice questions. Then, we evaluate the effectiveness of storytelling with LLMs through an RCT experiment with legal novices on 10 samples from the dataset. We find that LLM-generated stories enhance comprehension of legal concepts and interest in law among non-native speakers compared to only definitions. Moreover, stories consistently help participants relate legal concepts to their lives. Finally, we find that learning with stories shows a higher retention rate for non-native speakers in the follow-up assessment. Our work has strong implications for using LLMs in promoting teaching and learning in the legal field and beyond.
Abstract:In the domain of Natural Language Processing (NLP), Large Language Models (LLMs) have demonstrated promise in text-generation tasks. However, their educational applications, particularly for domain-specific queries, remain underexplored. This study investigates LLMs' capabilities in educational scenarios, focusing on concept graph recovery and question-answering (QA). We assess LLMs' zero-shot performance in creating domain-specific concept graphs and introduce TutorQA, a new expert-verified NLP-focused benchmark for scientific graph reasoning and QA. TutorQA consists of five tasks with 500 QA pairs. To tackle TutorQA queries, we present CGLLM, a pipeline integrating concept graphs with LLMs for answering diverse questions. Our results indicate that LLMs' zero-shot concept graph recovery is competitive with supervised methods, showing an average 3% F1 score improvement. In TutorQA tasks, LLMs achieve up to 26% F1 score enhancement. Moreover, human evaluation and analysis show that CGLLM generates answers with more fine-grained concepts.
Abstract:Transformer-based models excel in various natural language processing (NLP) tasks, attracting countless efforts to explain their inner workings. Prior methods explain Transformers by focusing on the raw gradient and attention as token attribution scores, where non-relevant information is often considered during explanation computation, resulting in confusing results. In this work, we propose highlighting the important information and eliminating irrelevant information by a refined information flow on top of the layer-wise relevance propagation (LRP) method. Specifically, we consider identifying syntactic and positional heads as important attention heads and focus on the relevance obtained from these important heads. Experimental results demonstrate that irrelevant information does distort output attribution scores and then should be masked during explanation computation. Compared to eight baselines on both classification and question-answering datasets, our method consistently outperforms with over 3\% to 33\% improvement on explanation metrics, providing superior explanation performance. Our anonymous code repository is available at: https://github.com/LinxinS97/Mask-LRP
Abstract:In the evolving field of personalized news recommendation, understanding the semantics of the underlying data is crucial. Large Language Models (LLMs) like GPT-4 have shown promising performance in understanding natural language. However, the extent of their applicability in news recommendation systems remains to be validated. This paper introduces RecPrompt, the first framework for news recommendation that leverages the capabilities of LLMs through prompt engineering. This system incorporates a prompt optimizer that applies an iterative bootstrapping process, enhancing the LLM-based recommender's ability to align news content with user preferences and interests more effectively. Moreover, this study offers insights into the effective use of LLMs in news recommendation, emphasizing both the advantages and the challenges of incorporating LLMs into recommendation systems.
Abstract:This study introduces MedGen, a comprehensive natural language processing (NLP) toolkit designed for medical text processing. MedGen is tailored for biomedical researchers and healthcare professionals with an easy-to-use, all-in-one solution that requires minimal programming expertise. It includes (1) Generative Functions: For the first time, MedGen includes four advanced generative functions: question answering, text summarization, text simplification, and machine translation; (2) Basic NLP Functions: MedGen integrates 12 essential NLP functions such as word tokenization and sentence segmentation; and (3) Query and Search Capabilities: MedGen provides user-friendly query and search functions on text corpora. We fine-tuned 32 domain-specific language models, evaluated them thoroughly on 24 established benchmarks and conducted manual reviews with clinicians. Additionally, we expanded our toolkit by introducing query and search functions, while also standardizing and integrating functions from third-party libraries. The toolkit, its models, and associated data are publicly available via https://github.com/Yale-LILY/MedGen.