Abstract:In English literature, the 19th century witnessed a significant transition in styles, themes, and genres. Consequently, the novels from this period display remarkable diversity. This paper explores these variations by examining the evolution of term usage in 19th century English novels through the lens of information retrieval. By applying a query expansion-based approach to a decade-segmented collection of fiction from the British Library, we examine how related terms vary over time. Our analysis employs multiple standard metrics including Kendall's tau, Jaccard similarity, and Jensen-Shannon divergence to assess overlaps and shifts in expanded query term sets. Our results indicate a significant degree of divergence in the related terms across decades as selected by the query expansion technique, suggesting substantial linguistic and conceptual changes throughout the 19th century novels.
Abstract:Pre-trained transformer models have shown great promise in various natural language processing tasks, including personalized news recommendations. To harness the power of these models, we introduce Transformers4NewsRec, a new Python framework built on the \textbf{Transformers} library. This framework is designed to unify and compare the performance of various news recommendation models, including deep neural networks and graph-based models. Transformers4NewsRec offers flexibility in terms of model selection, data preprocessing, and evaluation, allowing both quantitative and qualitative analysis.
Abstract:This paper explores the application of synthetic data in the post-OCR domain on multiple fronts by conducting experiments to assess the impact of data volume, augmentation, and synthetic data generation methods on model performance. Furthermore, we introduce a novel algorithm that leverages computer vision feature detection algorithms to calculate glyph similarity for constructing post-OCR synthetic data. Through experiments conducted across a variety of languages, including several low-resource ones, we demonstrate that models like ByT5 can significantly reduce Character Error Rates (CER) without the need for manually annotated data, and our proposed synthetic data generation method shows advantages over traditional methods, particularly in low-resource languages.
Abstract:The rapid development of Large Language Models (LLMs) like GPT-4, Claude-3, and Gemini has transformed the field of natural language processing. However, it has also resulted in a significant issue known as Benchmark Data Contamination (BDC). This occurs when language models inadvertently incorporate evaluation benchmark information from their training data, leading to inaccurate or unreliable performance during the evaluation phase of the process. This paper reviews the complex challenge of BDC in LLM evaluation and explores alternative assessment methods to mitigate the risks associated with traditional benchmarks. The paper also examines challenges and future directions in mitigating BDC risks, highlighting the complexity of the issue and the need for innovative solutions to ensure the reliability of LLM evaluation in real-world applications.
Abstract:Pseudo-relevance feedback (PRF) can enhance average retrieval effectiveness over a sufficiently large number of queries. However, PRF often introduces a drift into the original information need, thus hurting the retrieval effectiveness of several queries. While a selective application of PRF can potentially alleviate this issue, previous approaches have largely relied on unsupervised or feature-based learning to determine whether a query should be expanded. In contrast, we revisit the problem of selective PRF from a deep learning perspective, presenting a model that is entirely data-driven and trained in an end-to-end manner. The proposed model leverages a transformer-based bi-encoder architecture. Additionally, to further improve retrieval effectiveness with this selective PRF approach, we make use of the model's confidence estimates to combine the information from the original and expanded queries. In our experiments, we apply this selective feedback on a number of different combinations of ranking and feedback models, and show that our proposed approach consistently improves retrieval effectiveness for both sparse and dense ranking models, with the feedback models being either sparse, dense or generative.
Abstract:In the evolving field of personalized news recommendation, understanding the semantics of the underlying data is crucial. Large Language Models (LLMs) like GPT-4 have shown promising performance in understanding natural language. However, the extent of their applicability in news recommendation systems remains to be validated. This paper introduces RecPrompt, the first framework for news recommendation that leverages the capabilities of LLMs through prompt engineering. This system incorporates a prompt optimizer that applies an iterative bootstrapping process, enhancing the LLM-based recommender's ability to align news content with user preferences and interests more effectively. Moreover, this study offers insights into the effective use of LLMs in news recommendation, emphasizing both the advantages and the challenges of incorporating LLMs into recommendation systems.
Abstract:In the extensive recommender systems literature, novelty and diversity have been identified as key properties of useful recommendations. However, these properties have received limited attention in the specific sub-field of research paper recommender systems. In this work, we argue for the importance of offering novel and diverse research paper recommendations to scientists. This approach aims to reduce siloed reading, break down filter bubbles, and promote interdisciplinary research. We propose a novel framework for evaluating the novelty and diversity of research paper recommendations that leverages methods from network analysis and natural language processing. Using this framework, we show that the choice of representational method within a larger research paper recommendation system can have a measurable impact on the nature of downstream recommendations, specifically on their novelty and diversity. We introduce a novel paper embedding method, which we demonstrate offers more innovative and diverse recommendations without sacrificing precision, compared to other state-of-the-art baselines.
Abstract:The increasing availability of digital collections of historical and contemporary literature presents a wealth of possibilities for new research in the humanities. The scale and diversity of such collections however, presents particular challenges in identifying and extracting relevant content. This paper presents Curatr, an online platform for the exploration and curation of literature with machine learning-supported semantic search, designed within the context of digital humanities scholarship. The platform provides a text mining workflow that combines neural word embeddings with expert domain knowledge to enable the generation of thematic lexicons, allowing researches to curate relevant sub-corpora from a large corpus of 18th and 19th century digitised texts.
Abstract:News recommender systems (NRS) have been widely applied for online news websites to help users find relevant articles based on their interests. Recent methods have demonstrated considerable success in terms of recommendation performance. However, the lack of explanation for these recommendations can lead to mistrust among users and lack of acceptance of recommendations. To address this issue, we propose a new explainable news model to construct a topic-aware explainable recommendation approach that can both accurately identify relevant articles and explain why they have been recommended, using information from associated topics. Additionally, our model incorporates two coherence metrics applied to assess topic quality, providing measure of the interpretability of these explanations. The results of our experiments on the MIND dataset indicate that the proposed explainable NRS outperforms several other baseline systems, while it is also capable of producing interpretable topics compared to those generated by a classical LDA topic model. Furthermore, we present a case study through a real-world example showcasing the usefulness of our NRS for generating explanations.
Abstract:Despite the retrieval effectiveness of queries being mutually independent of one another, the evaluation of query performance prediction (QPP) systems has been carried out by measuring rank correlation over an entire set of queries. Such a listwise approach has a number of disadvantages, notably that it does not support the common requirement of assessing QPP for individual queries. In this paper, we propose a pointwise QPP framework that allows us to evaluate the quality of a QPP system for individual queries by measuring the deviations between each prediction versus the corresponding true value, and then aggregating the results over a set of queries. Our experiments demonstrate that this new approach leads to smaller variances in QPP evaluations across a range of different target metrics and retrieval models.