Abstract:Pre-trained transformer models have shown great promise in various natural language processing tasks, including personalized news recommendations. To harness the power of these models, we introduce Transformers4NewsRec, a new Python framework built on the \textbf{Transformers} library. This framework is designed to unify and compare the performance of various news recommendation models, including deep neural networks and graph-based models. Transformers4NewsRec offers flexibility in terms of model selection, data preprocessing, and evaluation, allowing both quantitative and qualitative analysis.
Abstract:The present study aims to extend the novel physics-informed machine learning approach, specifically the neural-integrated meshfree (NIM) method, to model finite-strain problems characterized by nonlinear elasticity and large deformations. To this end, the hyperelastic material models are integrated into the loss function of the NIM method by employing a consistent local variational formulation. Thanks to the inherent differentiable programming capabilities, NIM can circumvent the need for derivation of Newton-Raphson linearization of the variational form and the resulting tangent stiffness matrix, typically required in traditional numerical methods. Additionally, NIM utilizes a hybrid neural-numerical approximation encoded with partition-of-unity basis functions, coined NeuroPU, to effectively represent the displacement and streamline the training process. NeuroPU can also be used for approximating the unknown material fields, enabling NIM a unified framework for both forward and inverse modeling. For the imposition of displacement boundary conditions, this study introduces a new approach based on singular kernel functions into the NeuroPU approximation, leveraging its unique feature that allows for customized basis functions. Numerical experiments demonstrate the NIM method's capability in forward hyperelasticity modeling, achieving desirable accuracy, with errors among $10^{-3} \sim 10^{-5}$ in the relative $L_2$ norm, comparable to the well-established finite element solvers. Furthermore, NIM is applied to address the complex task of identifying heterogeneous mechanical properties of hyperelastic materials from strain data, validating its effectiveness in the inverse modeling of nonlinear materials. To leverage GPU acceleration, NIM is fully implemented on the JAX deep learning framework in this study, utilizing the accelerator-oriented array computation capabilities offered by JAX.
Abstract:In the evolving field of personalized news recommendation, understanding the semantics of the underlying data is crucial. Large Language Models (LLMs) like GPT-4 have shown promising performance in understanding natural language. However, the extent of their applicability in news recommendation systems remains to be validated. This paper introduces RecPrompt, the first framework for news recommendation that leverages the capabilities of LLMs through prompt engineering. This system incorporates a prompt optimizer that applies an iterative bootstrapping process, enhancing the LLM-based recommender's ability to align news content with user preferences and interests more effectively. Moreover, this study offers insights into the effective use of LLMs in news recommendation, emphasizing both the advantages and the challenges of incorporating LLMs into recommendation systems.
Abstract:We present the neural-integrated meshfree (NIM) method, a differentiable programming-based hybrid meshfree approach within the field of computational mechanics. NIM seamlessly integrates traditional physics-based meshfree discretization techniques with deep learning architectures. It employs a hybrid approximation scheme, NeuroPU, to effectively represent the solution by combining continuous DNN representations with partition of unity (PU) basis functions associated with the underlying spatial discretization. This neural-numerical hybridization not only enhances the solution representation through functional space decomposition but also reduces both the size of DNN model and the need for spatial gradient computations based on automatic differentiation, leading to a significant improvement in training efficiency. Under the NIM framework, we propose two truly meshfree solvers: the strong form-based NIM (S-NIM) and the local variational form-based NIM (V-NIM). In the S-NIM solver, the strong-form governing equation is directly considered in the loss function, while the V-NIM solver employs a local Petrov-Galerkin approach that allows the construction of variational residuals based on arbitrary overlapping subdomains. This ensures both the satisfaction of underlying physics and the preservation of meshfree property. We perform extensive numerical experiments on both stationary and transient benchmark problems to assess the effectiveness of the proposed NIM methods in terms of accuracy, scalability, generalizability, and convergence properties. Moreover, comparative analysis with other physics-informed machine learning methods demonstrates that NIM, especially V-NIM, significantly enhances both accuracy and efficiency in end-to-end predictive capabilities.
Abstract:Spectrum analysis systems in online water quality testing are designed to detect types and concentrations of pollutants and enable regulatory agencies to respond promptly to pollution incidents. However, spectral data-based testing devices suffer from complex noise patterns when deployed in non-laboratory environments. To make the analysis model applicable to more environments, we propose a noise patterns transferring model, which takes the spectrum of standard water samples in different environments as cases and learns the differences in their noise patterns, thus enabling noise patterns to transfer to unknown samples. Unfortunately, the inevitable sample-level baseline noise makes the model unable to obtain the paired data that only differ in dataset-level environmental noise. To address the problem, we generate a sample-to-sample case-base to exclude the interference of sample-level noise on dataset-level noise learning, enhancing the system's learning performance. Experiments on spectral data with different background noises demonstrate the good noise-transferring ability of the proposed method against baseline systems ranging from wavelet denoising, deep neural networks, and generative models. From this research, we posit that our method can enhance the performance of DL models by generating high-quality cases. The source code is made publicly available online at https://github.com/Magnomic/CNST.
Abstract:In data stream mining, predictive models typically suffer drops in predictive performance due to concept drift. As enough data representing the new concept must be collected for the new concept to be well learnt, the predictive performance of existing models usually takes some time to recover from concept drift. To speed up recovery from concept drift and improve predictive performance in data stream mining, this work proposes a novel approach called Multi-sourcE onLine TrAnsfer learning for Non-statIonary Environments (Melanie). Melanie is the first approach able to transfer knowledge between multiple data streaming sources in non-stationary environments. It creates several sub-classifiers to learn different aspects from different source and target concepts over time. The sub-classifiers that match the current target concept well are identified, and used to compose an ensemble for predicting examples from the target concept. We evaluate Melanie on several synthetic data streams containing different types of concept drift and on real world data streams. The results indicate that Melanie can deal with a variety drifts and improve predictive performance over existing data stream learning algorithms by making use of multiple sources.