Abstract:Pre-trained transformer models have shown great promise in various natural language processing tasks, including personalized news recommendations. To harness the power of these models, we introduce Transformers4NewsRec, a new Python framework built on the \textbf{Transformers} library. This framework is designed to unify and compare the performance of various news recommendation models, including deep neural networks and graph-based models. Transformers4NewsRec offers flexibility in terms of model selection, data preprocessing, and evaluation, allowing both quantitative and qualitative analysis.
Abstract:In the evolving field of personalized news recommendation, understanding the semantics of the underlying data is crucial. Large Language Models (LLMs) like GPT-4 have shown promising performance in understanding natural language. However, the extent of their applicability in news recommendation systems remains to be validated. This paper introduces RecPrompt, the first framework for news recommendation that leverages the capabilities of LLMs through prompt engineering. This system incorporates a prompt optimizer that applies an iterative bootstrapping process, enhancing the LLM-based recommender's ability to align news content with user preferences and interests more effectively. Moreover, this study offers insights into the effective use of LLMs in news recommendation, emphasizing both the advantages and the challenges of incorporating LLMs into recommendation systems.
Abstract:Large Language Models (LLMs) have achieved significant success across various natural language processing (NLP) tasks, encompassing question-answering, summarization, and machine translation, among others. While LLMs excel in general tasks, their efficacy in domain-specific applications remains under exploration. Additionally, LLM-generated text sometimes exhibits issues like hallucination and disinformation. In this study, we assess LLMs' capability of producing concise survey articles within the computer science-NLP domain, focusing on 20 chosen topics. Automated evaluations indicate that GPT-4 outperforms GPT-3.5 when benchmarked against the ground truth. Furthermore, four human evaluators provide insights from six perspectives across four model configurations. Through case studies, we demonstrate that while GPT often yields commendable results, there are instances of shortcomings, such as incomplete information and the exhibition of lapses in factual accuracy.
Abstract:Precisely recommending candidate news articles to users has always been a core challenge for personalized news recommendation systems. Most recent works primarily focus on using advanced natural language processing techniques to extract semantic information from rich textual data, employing content-based methods derived from local historical news. However, this approach lacks a global perspective, failing to account for users' hidden motivations and behaviors beyond semantic information. To address this challenge, we propose a novel model called GLORY (Global-LOcal news Recommendation sYstem), which combines global representations learned from other users with local representations to enhance personalized recommendation systems. We accomplish this by constructing a Global-aware Historical News Encoder, which includes a global news graph and employs gated graph neural networks to enrich news representations, thereby fusing historical news representations by a historical news aggregator. Similarly, we extend this approach to a Global Candidate News Encoder, utilizing a global entity graph and a candidate news aggregator to enhance candidate news representation. Evaluation results on two public news datasets demonstrate that our method outperforms existing approaches. Furthermore, our model offers more diverse recommendations.
Abstract:News recommender systems (NRS) have been widely applied for online news websites to help users find relevant articles based on their interests. Recent methods have demonstrated considerable success in terms of recommendation performance. However, the lack of explanation for these recommendations can lead to mistrust among users and lack of acceptance of recommendations. To address this issue, we propose a new explainable news model to construct a topic-aware explainable recommendation approach that can both accurately identify relevant articles and explain why they have been recommended, using information from associated topics. Additionally, our model incorporates two coherence metrics applied to assess topic quality, providing measure of the interpretability of these explanations. The results of our experiments on the MIND dataset indicate that the proposed explainable NRS outperforms several other baseline systems, while it is also capable of producing interpretable topics compared to those generated by a classical LDA topic model. Furthermore, we present a case study through a real-world example showcasing the usefulness of our NRS for generating explanations.
Abstract:In recent years, many recommender systems have utilized textual data for topic extraction to enhance interpretability. However, our findings reveal a noticeable deficiency in the coherence of keywords within topics, resulting in low explainability of the model. This paper introduces a novel approach called entropy regularization to address the issue, leading to more interpretable topics extracted from recommender systems, while ensuring that the performance of the primary task stays competitively strong. The effectiveness of the strategy is validated through experiments on a variation of the probabilistic matrix factorization model that utilizes textual data to extract item embeddings. The experiment results show a significant improvement in topic coherence, which is quantified by cosine similarity on word embeddings.
Abstract:Many recent deep learning-based solutions have widely adopted the attention-based mechanism in various tasks of the NLP discipline. However, the inherent characteristics of deep learning models and the flexibility of the attention mechanism increase the models' complexity, thus leading to challenges in model explainability. In this paper, to address this challenge, we propose a novel practical framework by utilizing a two-tier attention architecture to decouple the complexity of explanation and the decision-making process. We apply it in the context of a news article classification task. The experiments on two large-scaled news corpora demonstrate that the proposed model can achieve competitive performance with many state-of-the-art alternatives and illustrate its appropriateness from an explainability perspective.
Abstract:With the rise of big data technologies, many smart transportation applications have been rapidly developed in recent years including bus arrival time predictions. This type of applications help passengers to plan trips more efficiently without wasting unpredictable amount of waiting time at bus stops. Many studies focus on improving the prediction accuracy of various machine learning and statistical models, while much less work demonstrate their applicability of being deployed and used in realistic urban settings. This paper tries to fill this gap by proposing a general and practical evaluation framework for analysing various widely used prediction models (i.e. delay, k-nearest-neighbour, kernel regression, additive model, and recurrent neural network using long short term memory) for bus arrival time. In particular, this framework contains a raw bus GPS data pre-processing method that needs much less number of input data points while still maintain satisfactory prediction results. This pre-processing method enables various models to predict arrival time at bus stops only, by using a KD-tree based nearest point search method. Based on this framework, using raw bus GPS dataset in different scales from the city of Dublin, Ireland, we also present preliminary results for city managers by analysing the practical strengths and weaknesses in both training and predicting stages of commonly used prediction models.