Abstract:Deep learning has achieved significant breakthroughs in medical imaging, but these advancements are often dependent on large, well-annotated datasets. However, obtaining such datasets poses a significant challenge, as it requires time-consuming and labor-intensive annotations from medical experts. Consequently, there is growing interest in learning paradigms such as incomplete, inexact, and absent supervision, which are designed to operate under limited, inexact, or missing labels. This survey categorizes and reviews the evolving research in these areas, analyzing around 600 notable contributions since 2018. It covers tasks such as image classification, segmentation, and detection across various medical application areas, including but not limited to brain, chest, and cardiac imaging. We attempt to establish the relationships among existing research studies in related areas. We provide formal definitions of different learning paradigms and offer a comprehensive summary and interpretation of various learning mechanisms and strategies, aiding readers in better understanding the current research landscape and ideas. We also discuss potential future research challenges.
Abstract:Active learning (AL) has found wide applications in medical image segmentation, aiming to alleviate the annotation workload and enhance performance. Conventional uncertainty-based AL methods, such as entropy and Bayesian, often rely on an aggregate of all pixel-level metrics. However, in imbalanced settings, these methods tend to neglect the significance of target regions, eg., lesions, and tumors. Moreover, uncertainty-based selection introduces redundancy. These factors lead to unsatisfactory performance, and in many cases, even underperform random sampling. To solve this problem, we introduce a novel approach called the Selective Uncertainty-based AL, avoiding the conventional practice of summing up the metrics of all pixels. Through a filtering process, our strategy prioritizes pixels within target areas and those near decision boundaries. This resolves the aforementioned disregard for target areas and redundancy. Our method showed substantial improvements across five different uncertainty-based methods and two distinct datasets, utilizing fewer labeled data to reach the supervised baseline and consistently achieving the highest overall performance. Our code is available at https://github.com/HelenMa9998/Selective\_Uncertainty\_AL.